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Abstract. An atlas-based automated liver segmentation method from
3D CT images is described. The method utilizes two types of atlases,
that is, the probabilistic atlas (PA) and statistical shape model (SSM).
Voxel-based segmentation with PA is firstly performed to obtain a liver
region, and then the obtained region is used as the initial region for
subsequent SSM fitting to 3D CT images. To improve reconstruction
accuracy especially for largely deformed livers, we utilize a multi-level
SSM (ML-SSM). In ML-SSM, the whole shape is divided into patches,
and principal component analysis is applied to each patches. To avoid
the inconsistency among patches, we introduce a new constraint called
the adhesiveness constraint for overlap regions among patches. In exper-
iments, we demonstrate that segmentation accuracy improved by using
the initial region obtained with PA and the introduced constraint for
ML-SSM.

1 Introduction

Segmentation of the liver from 3D data is a prerequisite for computer-assisted
diagnosis and preoperative planning. Prior information of the liver, typically
represented as statistical atlases, is useful for robust segmentation. Two types of
statistical atlases, a statistical shape model (SSM) [1] and a probabilistic atlas
(PA) [2], have been utilized to increase robustness of the segmentation.

A SSM is widely used for organ segmentation and its potential performance
for liver segmentation has been shown [3][4]. However, previous methods using
SSM [3][4] had the following problems: (1)There is essential limitation on recon-
struction accuracy especially for diseased livers involving large deformations and
lesions. (2) Good initialization is required to obtain proper convergence. One ap-
proach to overcome the first problem is to use multi-level SSM (ML-SSM) [5], in
which the whole organ shape is divided into multiple patches, which are further
subdivided at finer representation levels. One problem of ML-SSM is, however,
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inconsistency among patches at finer levels. While previous work tried to solve
the inconsistency problem [6], they did not apply the method to the liver, which
has highly complex shape and large inter-patient variation. Another approach
to address the first problem is to perform SSM fitting followed by shape con-
strained deformable model fitting [4]. However, shape constraints inherent in the
liver are not embedded in the deformable model, and robustness against large
deformation and lesions has not been verified. Further, the second problem has
not been addressed in the previous studies. Heimann et al. reported that not a
few cases failed to converge due to the initialization problem [4].

An alternative approach to represent prior information is probabilistic atlas
(PA) [2], where the existence probability of the liver is assigned to each voxel
position. Recently, prediction accuracy of PA was shown to improve using spatial
standardization based on surrounding structures [7][8]. Zhou et al. showed that
highly accurate segmentation was possible from non-contrasted CT images by
using an automated method based on PA [8]. However, the datasets they used
consisted of normal and a fraction of mildly diseased livers and did not verify
the performance for severely diseased livers.

In this paper, we formulate an automated method for liver segmentation using
both PA and ML-SSM. The features of our method are as follows: (1) Initializa-
tion for SSM fitting is automated using automated segmentation based on PA.
(2) ML-SSM is used to improve reconstruction accuracy especially for largely de-
formed livers. (3) A new constraint is introduced to avoid inconsistency among
patches at finer levels of ML-SSM. We experimentally evaluate the improvements
of the performance by introducing the above features.

2 Methods

2.1 Spatial Standardization Using the Abdominal Cavity

Given training datasets, PA and ML-SSM are constructed. Before the construc-
tion, spatial standardization of the datasets is necessary. To do so, one CT
dataset which was judged to have an average liver shape by a radiology special-
ist was selected as a standard patient, and its abdominal cavity is regarded as
the standardized space to represent the standardized liver position and shape [7].

An individual patient dataset is mapped into the standardized patient space
through nonrigid registration. We assume that the regions of the abdominal cav-
ity and liver have already been manually segmented from 3D data. Let Ai and Li

denote the shapes of the i-th patient’s abdominal cavity and liver, respectively,
where i = 0, 1, 2, ..., n − 1. These shapes are represented by a 3D point dataset,
which is the vertices of the decimated surface model generated from the manu-
ally segmented region of 3D data. Let A0 be the abdominal cavity of the selected
standard patient data. Let T (x; Ai) be the dense 3D deformation vector field gen-
erated by nonrigid registration between i-th patient and the standard patient so
that the abdominal cavity Ai and A0 are registered, where x is 3D position of the
data. To generate the dense 3D deformation vector field, we use the point-based
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Fig. 1. Hierarchical division of the liver shape for multi-level statistical shape model

nonrigid registration method developed by Chui et al. [9]. The standardized liver
shape L′

i of original shape Li is given by L′
i = {x + T (x; Ai)|x ∈ Li}.

2.2 Constructing Statistical Atlases

Constructing probabilistic atlas. Let Bi(x) be a binary image where value
1 is assigned to inside of standardized liver L′

i and value 0 to other regions. The
probabilistic atlas, P (x), standardized using the abdominal cavity shape is defined
as the average of Bi(x) over n patient datasets by P (x) = (1/n)

∑n−1
i=0 Bi(x).

Constructing multi-level statistical shape model. Let L0 (= L′
0) be the

liver shape of the standard patient. Let v0k = (v0kx, v0ky , v0kz) (k = 1, · · · , m)
denote the vertices of L0, where m is the number of the vertices. Let q0 denote the
concatenation of v0k, where q0 is a 3m-dimensional vector. Point-based nonrigid
registration [9] between the standard liver L0 and individual liver L′

i is performed
to determine the correspondences of the vertices between the individual and
standard livers.

To construct a multi-level surface model, Li is divided into N1 sub-shapes (we
call them ”patches”) [6]. These patches are recursively divided and multi-level
surface model Li�j(j = 1, · · · , N�) is constructed (Fig. 1), where Li�j denotes
j-th patch at level � of i-th patient, and N� denotes the number of patches at
level � (N0 = 1). Each Li�j(i = 0, · · · , n−1) is normalized by its center of gravity.
Let qi�j denote concatenation of vertices of Li�j . We assume that the adjacent
patches at the same level overlap each other along their boundaries. These over-
lap regions are used to impose a constraint for eliminating inconsistency among
patches, which will be described in the next subsection. From n datasets of each
patch, qi�j(i = 0, · · · , n − 1), the mean vector q̄�j is computed, and then princi-
pal component analysis (PCA) is applied for each patch independently to obtain
eigenvectors Φ�j corresponding to principal components. ML-SSM at level � is
defined as

q�j(b�j) = q̄�j + Φ�jb�j (j = 1, · · · , N�) (1)

where b�j is the shape parameter vector at level � of j-th patch.

2.3 Segmentation of the Liver Using Statistical Atlases

The proposed segmentation method using PA and ML-SSM consists of the fol-
lowing steps:
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1. Initial region extraction using voxel-based segmentation with PA [8].
2. Estimation of initial shape parameters by fitting SSM to the initial region.
3. Repeat the following multi-level segmentation processes until the finest level.

(a) Repeat the following segmentation processes for a fixed number of times.
i. Detection of edge points of the liver boundaries from CT data by

searching along surface normals of current ML-SSM surface.
ii. Estimation of shape parameters by fitting ML-SSM to the edge

points.
(b) Divide the current patches of ML-SSM into those at the next finer level.

In the following, details of step 1, step 2, and segmentation processes at step
3(a) are described.

Initial region extraction using voxel-based segmentation with PA. Ab-
dominal CT data is spatially standardized by the method described in section
2.1 (Fig. 2(a)), and smoothed with an anisotropic diffusion filter [3]. For the stan-
dardization, the abdominal cavity region is extracted automatically unlike the
training phase (The extraction method is briefly described in 3.1). The volume of
interest (VOI) is defined as the region where probabilistic atlas P (x) (Fig. 2(b))
is larger than threshold value Tmap. Let I(x) be the standardized and smoothed
image. Likelihood image Q(x) is given by Q(x) = exp

(
−(I(x) − Ī)2/(2σ2)

)
,

where Ī and σ are average intensity and standard deviation, respectively, which
are estimated based on histogram analysis inside the VOI [8]. Q(x) is defined as
the Gaussian of I(x) and it is the largest when I(x) is the same as the average
intensity Ī. Given Q(x) and P (x), combined likelihood image Q′(x) (Fig. 2(c))
is defined as Q′(x) = Q(x)P (x). Note that the voxel value of Q′(x) is normalized
between 0 and 1. The initial region is extracted by thresholding of Q′(x) using
a fixed threshold value followed by opening and closing (Fig. 2(d)).

(a) (b) (c) (d)

Fig. 2. Initial region segmentation processes using probabilistic atlas. (a) Standardized
image. (b) Probabilistic atlas. (c) Combined likelihood image. (d) Extracted initial
region (green contours).

Estimation of initial shape parameters. Let R be the surface model gen-
erated from initial region. Given R, we obtain the initial shape parameter b0 by
iteratively minimizing

CD(q0(b0); R) =
1

|q0(b0)|
∑

x∈q0(b0)

w (d(x, R)) d(x, R)
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+
1

|R|
∑

x∈R

w (d (x,q0(b0))) d (x,q0(b0)) (2)

where d(x, S) is the Euclidean distance between point x and surface S, and
| · | denotes the number of vertices of surface model. Robust weight function
w(x) is used to deal with outliers due to large lesions [10]. w(x) is defined as

w(x) =
{

1 if |x| ≤ s
s/|x| if |x| > s

in which s is the robust standard deviation given by

s = max (1.4826 × median{|dk − median(dk)|}, 5.0 mm), and dk is residual in
millimeters at each vertex.

Segmentation processes using ML-SSM. The edge points of the liver
boundaries in CT images are detected from analysis of the CT value profile along
the surface normal of the ML-SSM [3]. In this study, the parameters needed for
profile analysis are automatically determined using the result of histogram anal-
ysis obtained in the initial region extraction processes.

Detected edge points are fitted to ML-SSM. Let P be the set of detected
edge points from CT data. Let q� and b� denote concatenations of q�j(b�j) and
b�j (j = 1, · · · , N�), respectively. Given P and level �, we estimate the shape
parameters b� by minimizing

C(q�(b�); P ) = CD(q�(b�); P ) + λCA(q�), (3)

where CD(q�(b�); P ) is the sum of distances between model surface q� and edge
points P , and CA(q�) is the adhesiveness constraint for the overlap regions to
eliminate the inconsistency among adjacent patches. Further, λ is a weight pa-
rameter balancing the two constraints. λ was determined experimentally. Let-
ting O�i be the overlap regions, the cost functions of the adhesiveness constraint,
CA(q�), is defined as

CA(q�) =
1

m�

N�∑

i=1

∑

x∈O�i

(x − x′)2 , (4)

where x′ is the point that corresponds to x in the overlap region of the adjacent
patch.

3 Experimental Results

3.1 Experimental Conditions

28 abdominal CT datasets (slice thickness 2.5 mm, pitch 1.25 mm, FOV 350×350
mm2, 512 × 512 matrix, 159 slices) were used. We randomly selected 8 datasets
for evaluation, and others for training. The probabilistic atlas and ML-SSM
were constructed from the 20 training datasets. A radiology specialist judged
the livers were largely deformed due to disease in 9 datasets among the 20
training datasets. Also, the livers were largely deformed in 5 datasets among the
8 evaluation datasets.
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Table 1. Evaluation results of segmentation accuracy. Averages of 8 datasets of Jaccard
similarity measure and average distance [mm] (divided by slash) are shown in each
experimental condition. The results of the proposed method are enhanced.

Initialization Using segmentation with PA Using average shape
Adhesiveness constraint λ = 0 λ = 0.2 λ = 0 λ = 0.2

Initial region 0.80 / 3.15 – / –
Level 0 0.80 / 3.20 0.79 / 3.61
Level 1 0.84 / 2.36 0.83 / 2.58 0.84 / 2.60 0.83 / 2.94
Level 2 0.79 / 2.48 0.86 / 2.15 0.79 / 2.73 0.85 / 2.54

(Jaccard similarity measure / Average distance [mm]).

While the abdominal cavity of the training data was manually segmented,
that of the evaluation data was automatically extracted by combining the inner
surface of the thoracic cage and the diaphragm surface approximated by a thin-
plate spline surface fitted to the lung bottom [8].

The number of SSM vertices at level 0 was 2500. The finest level of ML-SSM
was 2, that is, � = 0, 1, 2. The numbers of patches were 4 at level 1 and 16
at level 2. The threshold value Tmap of probabilistic atlas P (x) was set to 0.9.
The weight parameter λ for the adhesiveness constraint was set to λ = 0.2. The
iteration count of segmentation processes at each level was 10 times.

For comparison purpose, the experiments were also performed under the fol-
lowing conditions. (1) The adhesiveness constraint was not used, that is, λ = 0.
(2) Instead of using the initial region obtained by voxel-based segmentation with
PA, the average shape of the liver was used as the initial parameter of ML-SSM,
that is, b0 = 0.

To evaluate segmentation accuracy, we used two types of measures, Jaccard
similarity measure[11] and average distance. The former is defined as |A∩B|/|A∪
B|, where A and B are the estimated region using ML-SSM and the correspond-
ing manually segmented true region, respectively. The latter is the average of
symmetric distances between the estimated and true surfaces [3].

3.2 Results

Table 1 summarizes the results of segmentation accuracy. When the weight pa-
rameter of the adhesiveness constraint was set to λ = 0.2, segmentation accuracy
was improved as hierarchy level of ML-SSM increased. When λ = 0.0, however,
segmentation accuracy was decreased at level 2. The average distance of the pro-
posed method using segmentation with PA as the initial region was smaller than
using the average shape although there was not significant difference in Jaccard
similarity measure. These results show the usefulness of using the adhesiveness
constraint and segmentation with PA as the initial region, both of which have
been introduced in this paper.

Figure 3 shows the result of the proposed method for each dataset (λ =
0.2, using initial segmentation with PA). In all evaluation datasets, ML-SSM at
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Fig. 3. Evaluation results of segmentation accuracy for each data by proposed method
(λ = 0.2). Left: Jaccard similarity measure. Right: Average distance.

(a) (b) (c)

Fig. 4. Results of case 6. 3D surface models of the estimated shape (blue model) and
the true shape (semitransparent white model) are superimposed so that their difference
is easily understandable. (a) Region obtained by ML-SSM at level 2 using the proposed
method. (b) Initial region obtained by voxel-based segmentation with PA. (c) Region
obtained by ML-SSM at level 2 using average shape as initial region.

level 2 achieved the best results, and its Jaccard similarity measure and average
distance were 0.86 (± 0.05) and 2.15 (± 0.62) mm on average, respectively.

Figure 4 shows the results of case 6, which had a large tumor (whose volume
was more than 20 % of the whole liver) and large deformation. The estimated
liver shape by ML-SSM at level 2 using the proposed method (Fig. 4(a)) was
closer to the true shape than the initial region obtained by voxel-based segmen-
tation with PA [8] (Fig. 4(b)) and the result by ML-SSM at level 2 when the
average shape was used as an initial region (Fig. 4(c)).

4 Discussion and Conclusions

We have developed an automated segmentation method of the liver using statisti-
cal atlases. The proposed method was shown to improve segmentation accuracy
for datasets including largely deformed livers by combining initial segmenta-
tion based on PA and subsequent ML-SSM fitting. We consider that the initial
segmentation could capture boundary information even in deformed livers al-
though not a few outlier boundaries were included. Subsequent ML-SSM fitting
could deal with outlier boundaries to some extent, and further the edge detec-
tion accuracy was improved by hierarchization. Thus, the segmentation accuracy
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improved. We also demonstrate that the adhesiveness constraint was effective to
deal with inconsistency at finer levels of ML-SSM. The accuracy was significantly
degraded at the fine level (level 2) without the constraint.

In the current version of our method, automated extraction of the abdom-
inal cavity is necessary for standardization of datasets to construct statistical
atlases. Its extraction accuracy sometimes is insufficient. However, a circum-
scribed trapezoid of the thoracic cage, which is extracted in a highly stable
manner [8], can be used for standardization instead of the abdominal cavity at
the expense of slight degradation of the prediction accuracy of the constructed
PA. As future work, we will evaluate the proposed segmentation approaches us-
ing different standardization methods including the above method. Further, we
will evaluate the proposed approach by leave-one-out cross validation using large
CT datasets.
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