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AbstractÐThis paper describes a novel approach to tissue classification using three-dimensional (3D) derivative features in the

volume rendering pipeline. In conventional tissue classification for a scalar volume, tissues of interest are characterized by an opacity

transfer function defined as a one-dimensional (1D) function of the original volume intensity. To overcome the limitations inherent in

conventional 1D opacity functions, we propose a tissue classification method that employs a multidimensional opacity function, which

is a function of the 3D derivative features calculated from a scalar volume as well as the volume intensity. Tissues of interest are

characterized by explicitly defined classification rules based on 3D filter responses highlighting local structures, such as edge, sheet,

line, and blob, which typically correspond to tissue boundaries, cortices, vessels, and nodules, respectively, in medical volume data.

The 3D local structure filters are formulated using the gradient vector and Hessian matrix of the volume intensity function combined

with isotropic Gaussian blurring. These filter responses and the original intensity define a multidimensional feature space in which

multichannel tissue classification strategies are designed. The usefulness of the proposed method is demonstrated by comparisons

with conventional single-channel classification using both synthesized data and clinical data acquired with CT (computed tomography)

and MRI (magnetic resonance imaging) scanners. The improvement in image quality obtained using multichannel classification is

confirmed by evaluating the contrast and contrast-to-noise ratio in the resultant volume-rendered images with variable opacity values.

Index TermsÐVolume visualization, image enhancement, medical image, 3D derivative feature, multiscale analysis, multidimensional

opacity function, multichannel classification, partial volume effect.
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1 INTRODUCTION

VOLUME rendering [1], [2] is a powerful visualization tool,
especially useful in medical applications [3], [4] for

which the basic requirement is the ability to visualize
specific tissues of interest in relation to surrounding
structures. Tissue classification is one of the most important
processes in the volume rendering pipeline and, at present,
it is commonly based on a histogram of intensity values in
original volume data. Probabilistic and fuzzy classification
have also been employed instead of binary classification in
order to relate the probability of the existence of each tissue
to opacity and color transfer functions [5]. Nevertheless, the
performance of a classification method is largely limited by
the quality of the feature measurements, however mathe-
matically elaborate it is. Thus, one-dimensional (1D) opacity

functions using only the original intensity as the feature
measurement often suffer from inherent limitations in
classifying voxels into tissues of interest and unwanted
ones. Among the efforts that have been made to overcome
this problem, one involves the use of multispectral
information. In the medical field, vector-valued MR volume
data acquired with different imaging protocols have been
used for multichannel classifiers [6], [7].

In this paper, we propose a novel approach to tissue
classification for volume rendering, a preliminary report of
which can be found in [8]. The basic idea is to characterize
each tissue based not only on its original intensity values,
but also its local intensity structures [9], [10], [11], [12], [13].
For example, blood vessels, bone cortices, and nodules are
characterized by line-like, sheet-like, and blob-like struc-
tures, respectively. We therefore design three-dimensional
(3D) filters based on the gradient vector and Hessian matrix
of the volume intensity function combined with isotropic
Gaussian blurring to enhance these specific 3D local
intensity structures, and use the filter outputs as multi-
channel information for tissue classification. The classifica-
tion process in volume rendering can be viewed as one of
assigning opacity and color to each voxel. In our approach,
opacity and color are assigned using a multidimensional
feature space whose axes correspond to the filtered values
calculated from a scalar volume, as well as its original
intensity values. That is, a multidimensional opacity
function is used for tissue classification. Here, it should
be noted that the multiple feature measurements are
obtained not from vector-valued data, but from scalar
data. Through visualization using different imaging
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modalities and anatomical structures, we demonstrate that
multidimensional opacity functions based on 3D local
intensity structures can be highly effective for characteriz-
ing tissues and that the quality of the resultant volume-
rendered images is significantly improved.

The organization of the paper is as follows: In Section 2,
we characterize the novelty of our approach through a
review of related work. In Section 3, we formulate 3D filters
for the enhancement of specific local intensity structures
with variable scales. In Section 4, we describe multichannel
classifiers based on local intensity structures. In Section 5,
we present experimental results using both synthesized
volumes and real CT (computed tomography) and MR
(magnetic resonance) data. In Section 6, we discuss the
work and indicate the directions of future research.

2 RELATED WORK

2.1 Multidimensional Opacity Function Using
Derivative Features

The earliest mention of a multidimensional opacity function
was by Levoy [1], who assigned opacity as a two-
dimensional (2D) function of intensity and gradient
magnitude in order to highlight sharp changes in volume
data, that is, object surfaces. More recently, Kindlmann and
Durkin analyzed a 3D histogram whose axes correspond to
the original intensity, gradient magnitude, and second
derivative along the gradient vector [14]. While their main
emphasis is on the semiautomated generation of an opacity
function based on inspection of the 3D histogram, they
demonstrate that surfaces with different contrasts can be
discriminated using opacity assignment by a 2D function of
intensity and gradient magnitude. The differences between
the work of Kindlmann and Durkin and ours can be
summarized as follows:

. Although Kindlmann and Durkin only use gradient
magnitude as an additional variable of an opacity
function, we use several types of feature measure-
ments based on first and second derivatives, includ-
ing gradient magnitude and second-order structures
such as sheet, line, and blob.

. Even if we consider only the use of gradient
magnitude, our approach focuses on its utility for
avoiding misclassification due to partial voluming,
which Kindlmann and Durkin do not address.

2.2 Dealing with Partial Volume Effects

The problem of avoiding misclassification due to partial
voluming is one of the main issues in tissue classification.
Multichannel information obtained from vector-valued MR
data was effectively used by Laidlaw et al. to resolve the
problem [15]. Although we address the same problem, our
approach is different in that we demonstrate the utility of
multichannel information obtained from scalar data rather
than vector-valued data.

2.3 Image Analysis for Extracting Local Intensity
Structures

Feature extraction is one of main research topics in the
image processing field. In the 2D domain, various filtering

techniques have been developed to enhance specific types
of features and a unified approach for classifying local
intensity structures using the Hessian matrix and gradient
vector of the intensity function has been proposed [16].
Although there have been relatively few studies in the 3D
domain, successful results have been reported in the
enhancement of line structures such as blood vessels [9],
[10], planer structures such as narrow articular spaces [17],
and blob structures such as nodules [18]. Among these
reports, one unified framework is based on a 3 � 3 tensor
representing local orientation [11], [12], [17], which can be
used to guide adaptive filtering for orientation sensitive
smoothing. Another framework is based on a 3 � 3 Hessian
matrix [9], [10], [13], which is similar to the tensor model,
but based on directional second derivatives. The possibility
of using the Hessian for line and sheet detection in volume
data was suggested by Koller et al. [13]. Further, a line
measure based on the Hessian and its multiscale integration
was formulated and intensively analyzed by Sato et al. [9],
[10]. The approach described in this paper has two novel
features as compared with these previous studies.

. The multiscale line measure is extended and
generalized to different types of local intensity
structures, including sheet and blob.

. A multidimensional feature space whose axes
correspond to different types of local intensity
structures, as well as the original intensity values,
is used to characterize each tissue.

3 MULTICALE 3D FILTERS FOR ENHANCEMENT OF

LOCAL STRUCTURES

We design 3D filters responding to specific 3D local
structures such as edge, sheet, line, and blob. The derived
filters are based on the gradient vector and the Hessian
matrix of the intensity function combined with normalized
Gaussian derivatives. The filter characteristics are analyzed
using Gaussian local structure models. The formulation of
this section is the generalization of a line measure [10] to
different second-order structures.

3.1 Measures of Similarity to Local Structures

Let f�x� be an intensity function of a volume, where
x � �x; y; z�. The second-order approximation of f�x�
around x0 is given by

fII�x� � f�x0� � �xÿ x0�>rf0 � 1

2
�xÿ x0�>r2f0�xÿ x0�;

�1�
where rf0 and r2f0 denote the gradient vector and the
Hessian matrix at x0, respectively. Thus, the second-order
structures of local intensity variations around each point of
a volume can be described by the original intensity, the
gradient vector, and the Hessian matrix.

The gradient vector is defined as

rf � �fx; fy; fz�; �2�
where partial derivatives of volume f�x� are represented as
fx � @

@x f , fy � @
@y f , and fz � @

@z f . Gradient magnitude is
given by
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jrfj �
��������������������������
f2
x � f2

y � f2
z

q
:

The gradient magnitude has been widely used as a measure
of similarity to a 3D edge structure.

The Hessian matrix is given by

r2f �
fxx fxy fxz
fyx fyy fyz
fzx fzy fzz

24 35; �3�

where partial second derivatives of f�x� are represented as

fxx � @2

@x2 f , fyz � @2

@y@z f , and so on. Let the eigenvalues of

r2f be �1, �2, �3 (�1 � �2 � �3), and their corresponding

eigenvectors be e1, e2, e3, respectively. The eigenvector

e1�x�, corresponding to the largest eigenvalue �1�x�,
represents the direction along which the second derivative

is maximum, and �1�x� gives the maximum second-

derivative value. Similarly, �3�x� and e3�x� give the

minimum directional second-derivative value and its

direction, and �2�x� and e2�x� the minimum directional

second-derivative value orthogonal to e3�x� and its direc-

tion, respectively. �2�x� and e2�x� also give the maximum

directional second-derivative value orthogonal to e1�x� and

its direction.
f , jrf j, �1, �2, and �3 are invariant under orthonormal

transformations. A multidimensional space can be defined
whose axes correspond to these invariant measurements.
The basic idea of the proposed method is to use the
multidimensional space for tissue classificationÐby con-
trast, only f is usually used in the conventional method.
f and jrfj can be regarded as the intensity itself and the

edge strength, respectively, which are intuitive feature
measurements of local intensity structures. Thus, we define
the Sint filter, which takes an original scalar volume f into a
scalar volume of intensity, as

Sintffg � f; �4�
and the Sedge filter, which takes an original scalar volume

into a scalar volume of a measure of similarity to an edge, as

Sedgeffg � jrf j: �5�
�1, �2, and �3 are combined and associated with the

intuitive measures of similarity to local structures. Three

types of second-order local structuresÐsheet, line, and

blobÐcan be classified using these eigenvalues. The basic

conditions of these local structures and examples of

anatomical structures that they represent are summarized

in Table 1, which shows the conditions for the case where

structures are bright in contrast with surrounding regions.

Conditions can be similarly specified for the case where the

contrast is reversed. Based on these conditions, measures of

similarity to these local structures can be derived. With

respect to the case of a line, we have already proposed a line

filter that takes an original volume f into a volume of a line

measure [10] given by

Slineffg � j�3j �  ��2;�3� � !��1;�2� �3 � �2 < 0
0; otherwise;

�
�6�

where  is a weight function written as

 ��s;�t� � ��s�t�

; �t � �s < 0

0; otherwise;

�
�7�

in which 
 controls the sharpness of selectivity for the

conditions of each local structure (Fig. 1a), and ! is

written as

!��s;�t� �
�1� �s

j�tj�

 �t � �s � 0

�1ÿ � �s
j�tj�


 j�tj
� > �s > 0

0; otherwise;

8><>: �8�
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TABLE 1
Basic Conditions for Each Local Structure and Representative Anatomical Structures

Each structure is assumed to be brighter than the surrounding region.

Fig. 1. Weight functions in measures of similarity to local structures. (a)  ��s;�t�, representing the condition �t ' �s, where �t � �s.  ��s;�t� � 1

when �t � �s.  ��s;�t� � 0 when �s � 0. (b) !��s;�t�, representing the condition �t � �s ' 0. !��s;�t� � 1 when �s � 0: !��s;�t� � 0 when �t �
�s � 0 or �s�� j�t j� � � 0.



in which 0 < � � 1 (Fig. 1b). � is introduced in order to give

!��s;�t� an asymmetrical characteristic in the negative and

positive regions of �s.
Fig. 2a shows the roles of weight functions in represent-

ing the basic conditions of the line case. In (6), j�3j
represents the condition �3 � 0,  ��2;�3� represents the

condition �3 ' �2 and decreases with deviation from the

condition �3 ' �2, and !��1;�2� represents the condition

�2 � �1 ' 0 and decreases with deviation from the condi-

tion �1 ' 0 which is normalized by �2. By multiplying j�3j,
 ��2;�3�, and !��1;�2�, we represent the condition for a line

shown in Table 1. For the line case, the asymmetric

characteristic of ! is based on the following observations:

. When �1 is negative, the local structure should be
regarded as having a blob-like shape when j�1j
becomes large (lower right in Fig. 2a).

. When �1 is positive, the local structure should be
regarded as being stenotic in shape (i.e., part of a
vessel is narrowed), or it may be indicative of signal
loss arising from the partial volume effect (lower left
in Fig. 2a).

Therefore, when �1 is positive, we make the decrease with

the deviation from the �1 ' 0 condition less sharp in order

to still give a high response to a stenosis-like shape. We

typically used � � 0:25 and 
 � 0:5 (or 1) in our experi-

ments. Extensive analysis of the line measure, including the

effects of parameters 
 and �, can be found in [10].

The specific shape given in (7) is based on the need to

generalize two line measures,
����������
�3�2

p
and min�ÿ�3;ÿ�2� �

j�2j (where �3 < �2 < 0), suggested in earlier work [13].

These measures take into account the conditions �3 � 0 and

�3 ' �2. j�3j �  ��2;�3� in (6) is equal to
����������
�3�2

p
and j�2jwhen


 � 0:5 and 
 � 1, respectively. In this formulation [10], the

same type of function shape as that in (7) is used for (8) to

add the condition �2 � �1 ' 0.
We can extend the line measure to the blob and sheet

cases. In the blob case, the condition �3 ' �2 ' �1 � 0 can

be decomposed into �3 � 0 and �3 ' �2 and �2 ' �1. By

representing the condition �t ' �s using  ��s;�t�, we can

derive a blob filter given by

Sblobffg � j�3j �  ��2;�3� �  ��1;�2� �3 � �2 � �1 < 0
0; otherwise:

�
�9�

In the sheet case, the condition �3 � �2 ' �1 ' 0 can be

decomposed into �3 � 0 and �3 � �2 ' 0 and �3 � �1 ' 0.

By representing the condition �t � �s ' 0 using !��s;�t�,
we can derive a sheet filter given by

Ssheetffg � j�3j � !��2;�3� � !��1;�3� �3 < 0
0; otherwise:

�
�10�

Fig. 2b and Fig. 2c show the relationships between the

eigenvalue conditions and weight functions in the blob and

sheet measures.
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Fig. 2. Schematic diagrams of measures of similarity to local structures. The roles of weight functions in representing the basic conditions of a local
structure are shown. (a) Line measure. The structure becomes sheet-like and the weight function  approaches zero with deviation from the
condition �3 ' �2, blob-like and the weight function ! approaches zero with transition from the condition �2 � �1 ' 0 to �2 ' �1 � 0, and stenosis-
like and the weight function ! approaches zero with transition from the condition �2 � �1 ' 0 to �1 � 0. (b) Blob measure. The structure becomes
sheet-like with deviation from condition �3 ' �2, and line-like with deviation from the condition �2 ' �1. (c) Sheet measure. The structure becomes
blob-like, groove-like, line-like, or pit-like with transition from �3 � �1 ' 0 to �3 ' �1 � 0, �3 � �1 ' 0 to �1 � 0, �3 � �2 ' 0 to �3 ' �2 � 0, or
�3 � �2 ' 0 to �2 � 0, respectively.



3.2 Multiscale Computation and Integration of Filter
Responses

Local structures can exist at various scales. For example,
vessels and bone cortices can, respectively, be regarded as
line and sheet structures with various widths. In order to
make filter responses tunable to a width of interest, the
derivative computation for the gradient vector and the
Hessian matrix is combined with Gaussian convolution.
By adjusting the standard deviation of Gaussian convolu-
tion, local structures with a specific range of widths can
be enhanced. The Gaussian function is known as a
unique distribution optimizing localization in both the
spatial and frequency domains [19]. Thus, convolution
operations can be applied within local support (due to
spatial localization) with minimum aliasing errors (due to
frequency localization).

We denote the local structure filtering for a volume
blurred by Gaussian convolution with a standard deviation
�f as

S�ff ;�fg; �11�
where � 2 fint; edge; sheet; line; blobg. The filter responses
decrease as �f in the Gaussian convolution increases unless
appropriate normalization is performed [20], [21]. In order
to determine the normalization factor, we consider a
Gaussian-shaped model of edge, sheet, line, and blob with
variable scales.

An ideal step edge is described as

hedge�x� � 1; if x > 0
0; otherwise;

�
�12�

where x � �x; y; z�. By combining Gaussian blur with (12), a
blurred edge is modeled as

hedge�x;�r� � 1

2�
3
2�3
r

exp ÿ jxj
2

2�2
r

 !
� hedge�x�; �13�

where � represents the convolution and �r is the standard
deviation of the Gaussian function to control the degree of
blurring.

Sheet, line, and blob structures with variable widths are
modeled as

hsheet�x;�r� � exp ÿ x2

2�2
r

� �
; �14�

hline�x;�r� � exp ÿx
2 � y2

2�2
r

� �
; �15�

and

hblob�x;�r� � exp ÿ jxj
2

2�2
r

 !
; �16�

respectively, where �r controls the width of the structures.
We determine the normalization factor so that

S�fh��x;�r�;�fg satisfies the following condition:

. max�r S�fh��0;�r�;�fg is constant, irrespective of �f ,
where 0 � �0; 0; 0�.

The above condition can be satisfied when the Gaussian
first and second derivatives are computed by multiplying
by �f or �2

f , respectively, as the normalization factor. That
is, the normalized Gaussian derivatives are given by

fxpyq �x;�f� � f�p�qf � @p�q

@xp@yq
G�x;�f�g � f�x�; �17�

where p and q are nonnegative integer values satisfying

p� q � 2, and G�x;�� is an isotropic 3D Gaussian

function with a standard deviation � (see Appendix A

for the derivation of the normalization factor for second-

order local structures). Fig. 3 shows the normalized

response of S�fh��0;�r�;�fg (where �f � �isiÿ1, �1 � 1,

s � ���
2
p

, and i � 1; 2; 3; 4) for � 2 fedge; sheet; line; blobg
when �r is varied.

In the edge case, the maximum of the normalized
response of Sedgefhedge�0; �r�;�fg is 1����

2�
p (� 0:399) when

�r � 0, that is, the case of the ideal edge without blurring.
By increasing �f , Sedgefhedge�0; �r�;�fg gives a higher
response to blurred edges with a larger �r, while the
response to the ideal edge remains constant (Fig. 3a).

In the line case, the maximum of the normalized response
Slinefhline�0; �r�;�fg is 1

4 �� 0:25� when �r � �f [10]. That is,
Slineff ;�fg is regarded as being tuned to line structures with a
width �r � �f . A line filter with a single scale gives a high
response in only a narrow range of widths. We call the curves
shown in Fig. 3b, Fig. 3c, and Fig. 3d width response curves,
which represent filter characteristics like frequency re-
sponse curves. The width response curve of the line filter
can be adjusted and widened using multiscale integration
of filter responses given by

Mlineff ;�1; s; ng � max
1�i�n

Slineff;�ig; �18�

where �i � siÿ1�1, in which �1 is the smallest scale, s is a

scale factor, and n is the number of scales [10]. The width

response curve of multiscale integration using the four

scales consists of the maximum values among the four

single-scale width response curves and gives nearly uni-

form responses in the width range between �r � �1 and

�r � �4 when s � ���
2
p

(Fig. 3b). While the width response

curve can be perfectly uniform if continuous variation

values are used for �f , the deviation from the continuous

case is less than 3 percent using discrete values for �f with

s � ���
2
p

[10]. Similarly, in the cases of Ssheetfhsheet�0; �r�;�fg
and Sblobfhblob�0; �r�;�fg, the maximum of the normalized

response is 2
� ��3p �3 �� 0:385� when �r � �f��

2
p (Fig. 3c), and

2
3 �

��
3
5

q
�5�� 0:186� when �r �

��
3
2

q
�f (Fig. 3d), respectively

(see Appendix A for the derivation of the above relation-

ships). For the second-order cases, the width response curve

can be adjusted and widened using the multiscale integra-

tion method given by

M�2
ff ;�1; s; ng � max

1�i�n
S�2
ff ;�ig; �19�
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where �2 2 fsheet; line; blobg.
Sint can also be extended so as to be combined with

Gaussian blur, in which case we represent it as Sintff ;�fg.
3.3 Implementation

Our 3D local structure filtering methods described above
assume that volume data with isotropic voxels are used as
input data. However, voxels in medical volume data are
usually anisotropic since they generally have lower resolu-
tion along the third directionÐi.e., the direction orthogonal
to the slice planeÐthan within slices. Rotational invariant
feature extraction becomes more intuitive in a space where
the sample distances are uniform. That is, structures of a
particular size can be detected on the same scale indepen-
dent of the direction when the signal sampling is isotropic.
We therefore introduce a preprocessing procedure for 3D
local structure filtering in which we perform interpolation
to make each voxel isotropic. Linear and spline-based
interpolation methods are often used, but blurring is
inherently involved in these approaches. Because, as noted
above, the original volume data is inherently blurrier in the
third direction, further degradation of the data in that
direction should be avoided. For this reason, we opted to
employ sinc interpolation so as not to introduce any
additional blurring. After Gaussian-shaped slopes are
added at the beginning and end of each profile in the third
direction to avoid unwanted Gibbs ringing (see
Appendix B), sinc interpolation is performed by zero-filled
expansion in the frequency domain [22], [23].

The sinc interpolation and 3D local structure filtering

were implemented on a Sun Enterprise server with multi-

CPUs using multithreaded programming. With eight

CPUs (168 MHz), interpolation and single-scale 3D

filtering for a 256 � 256 � 128 volume were performed

in about five minutes. Separable implementation was used

for efficient 3D Gaussian derivative convolution. For

example, the computation of the second derivatives of

Gaussian in the Hessian matrix was implemented using

three separate convolutions with one-dimensional kernels

as represented by

fxiyjzk�x;�f� � @2

@xi@yj@zk
G�x;�f�

� �
� f�x�

� di

dxi
G�x;�f� � dj

dyj
G�y;�f� � dk

dzk
G�z;�f� � f�x�

� �� �
;

�20�
where i, j, and k are nonnegative integers satisfying i� j�
k � 2 and 4 � �f was used as the radius of the kernel [10].

Using this decomposition, the amount of computation

needed can be reduced from O�n3� to O�3n�, where n is

the kernel diameter. Details of the implementation of

eigenvalue computation for the Hessian matrix are de-

scribed in [10].
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Fig. 3. Plots of normalized responses of local structure filters for corresponding local models, S�fh��0;�r�;�fg, where �r is continuously varied and
�f � �isiÿ1 (�1 � 1, s � ���

2
p

, and i � 1; 2; 3; 4). See Appendix A for the theoretical derivations of the response curves shown in (b)-(d). (a) Response
of the edge filter for the edge model (� � edge). (b) Response of the line filter for the line model (� � line). (c) Response of the blob filter for the blob
model (� � blob). (d) Response of the sheet filter for the sheet model (� � sheet).



4 MULTICHANNEL TISSUE CLASSIFICATION BASED

ON LOCAL STRUCTURES

4.1 Representation of Classification Strategy

A multidimensional feature space can be defined whose

axes correspond to the measures of similarity to different

local structures selected from S�0;1
, S�2

, and M�2
, where

�0;1 2 fint; edgeg a n d �2 2 fsheet; line; blobg. L e t p �
�p1; p2; . . . ; pm� (m is the number of features) be a feature

vector in the multidimensional feature space, which

consists of multichannel values of the measures of similarity

to different local structures at each voxel. The opacity

function ��p� and color function c�p� � �R�p�; G�p�; B�p��
for volume rendering are given as functions of the multi-

dimensional variable p.
We consider the following problem: Given tissue classes

t � �t1; t2; . . . ; tn� (n is the number of tissue classes), how

can we determine the tissue opacity function �j�p� and

tissue color cj�p� for tissue tj? We use a 1D weight function

��pi�, whose range is �0; 1�, of feature pi as a primitive

function to specify the opacity function �j�p� for tissue tj.

We consider a generalized combination rule of the 1D

weight functions to obtain the opacity function ��p�
formally given by

��p� � max min
1�i�m

�1;i�pi�; min
1�i�m

�2;i�pi�; . . . ; min
1�i�m

�ri�pi�
� �

;

�21�
where r is the number of terms min1�i�m �ki�pi� and �ki�pi�
denotes the weight function for feature pi in the kth term.

The max and min operations in (21) respectively

correspond to union and intersection operations in fuzzy

theory [24]. Suppose �ki�pi� has a box-shaped function

given by

�ki�pi� � ��pi;Lki;Hki�; �22�
where

��x;L;H� � 1; L � x < H
0; otherwise:

�
�23�

When the opacity function of a 2D feature vector p �
�p1; p2� is specified by

��p� � max min ��p1;L11; H11�; ��p2;ÿ1;1�f g;f
min ��p1;ÿ1;1�; ��p2;L22; H22�f gg

� max ��p1;L11; H11�; ��p2;L22; H22�f g;
�24�

where �ki�pi� � ��pi;Lki;Hki�, r � 2, L12 � L21 � ÿ1, and
H12 � H21 � 1 in (21), the classification strategy can be
viewed as:

IF L11 � p1 < H11 OR L22 � p2 < H22

THEN ��p� � 1 ELSE ��p� � 0:

When the opacity function is specified by

��p� � maxfminf��p1;L11; H11�; ��p2;L12; H12�gg
� minf��p1;L11; H11�; ��p2;L12; H12�g;

�25�

where r � 1 in (21), the classification strategy can be
viewed as:

IF L11 � p1 < H11 AND L12 � p2 < H12

THEN ��p� � 1 ELSE ��p� � 0:

By replacing ��pi;Lki;Hki� with continuous weight func-
tions, fuzzy operations can be incorporated into the
classification strategy.

In practice, we chose the specific form of the opacity
functions given by

��p� � minf�0�Sint�;��p�g; �26�
where �0�Sint� is a 1D weight function whose range is �0; 1�,
and

��p� �

max min
1�i�m

�1;i�pi;L1;i; H1;i�; . . . ; min
1�i�m

�ri�pi;Lri;Hri�
� �

:

�27�
Examples are shown in Fig. 4. It is easily verified by
applying distributive laws that (26) is a special case of (21).
When ��p� � 1, (26) is equivalent to the conventional tissue
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Fig. 4. Multichannel tissue classification. (a) Example using the max (OR) operations. Discrete classification ��p� (upper left) is obtained by

combining ��pi� in different channels using the max (OR) operation. The resultant multidimensional opacity function ��p� (right) is obtained by the

min of the discrete classification and a continuous one-dimensional (1D) opacity function �0�Sint� (lower left). (b) Example using the min (AND)



classification method solely based on the original intensity

Sint. The specific form given in (26) allows a simple design

for the basic classification strategy, ��p�, based on logic

operations, while it creates the effects inherent in volume

rendering by interactive adjustment of �0�Sint� with

continuous values. Furthermore, this form is suitable for

implementation using conventional volume rendering soft-

ware packages or hardware renderers (see Section 4.3 for a

detailed description). Similarly, the color function c�p� �
�R�p�; G�p�; B�p�� is specified by

�R�p�; G�p�; B�p�� �
�minfr0�Sint�;��p�g;minfg0�Sint�;��p�g;
minfb0�Sint�;��p�g�;

�28�

where r0�Sint�, g0�Sint�, and b0�Sint� are 1D color functions

whose range is �0; 1�.
In summary, the processes of tissue classification and

visualization consist of the following steps:

1. Define tissue classes t � �t1; t2; . . . ; tn�.
2. Design a classification strategy.

a. Find the local structures to characterize each
tissue class tj �j � 1; 2; . . . ; n� and determine the
filter types and widths to define the multi-
dimensional feature vector p � �p1; p2; . . . ; pm�.

b. Determine �j�p�, defining the discrete classifi-
cation for each tissue class tj.

3. Interactively adjust the opacity �j�Sint� and color
cj�Sint� for each tissue tj to obtain desirable
visualizations.

The first step is the process of problem definition based on

the requirements of users such as clinicians and medical

researchers. The second step includes the analysis of the

problem and the design of the multichannel classifier and is

performed by the designer. Guidelines for designing a

classification strategy based on local structures are given

below. The third step is the interactive process of parameter

adjustment by the user.

4.2 Guidelines for Choosing Suitable Local
Structures for Classification

4.2.1 Guideline 1: Using Gradient Magnitude to Avoid

Misclassification Due to Partial Voluming

W e c o n s i d e r t w o e d g e m o d e l s , e1�x� � �I1 ÿ
I3�hedge�x;�r� � I3 a n d e2�x� � �I2 ÿ I3�hedge�x;�r� � I3

(where I1 > I2 > I3) based on (13) (Fig. 5a). We assume

that I1, I2, and I3 correspond to the average intensity values

of tissue classes, t1 (ªhighº-intensity tissue), t2 (ªmediumº-

intensity tissue), and t3 (ªlowº-intensity background),

respectively. Even if the intensity distributions (histograms)

of these tissues are well-separated, ambiguous intensity

values can exist at the boundaries between two different

tissue regions due to the partial volume effect. Fig. 5a shows

the histograms ��Sint� for these edge models. If the two

edges exist in the same volume data, misclassification

occurs around I2 when using the original intensity Sint only.

Fig. 5b shows histograms plotted in a 2D feature space

whose axes are Sint and Sedge. The 2D histograms

��Sint;Sedge� are arch-shaped because intermediate intensity

values occur at the boundaries where the gradient

magnitude Sedge is high. When the arm of the arch

reaches Sedge � 0, Sint corresponds to the average intensity

value of each tissue class. The intermediate intensities

with high gradient magnitudes are distributed near the

apex of the arch.
Based on the above observations, the feature vector p �

�Sint;Sedge� can be utilized to classify the voxels into two

tissue classes, t � (ªhighº, ªmediumº), without misclassi-

fication around Sint � I2. Fig. 5c illustrates the discrete

classifications for this purpose. One of the typical opacity

functions for tissue ªmed,º �med�p�, is specified as

�med�p� � minfAmed � ��Sint;Lm;Hm�;�med�p�g;
�med�p� � minf��Sint; 0; T1�; ��Sedge; 0; T2�g;

�29�

where Amed is the opacity value for tissue ªmed.º �high�p�
for tissue ªhighº is specified as
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Fig. 5. Guideline 1: Using gradient magnitude to avoid misclassification due to partial voluming. (a) Profiles and 1D histograms ��Sint� for edge
models e1�x� (green plots) and e2�x� (red plots). (b) 2D histograms ��p� for the two edge models where p � �Sint;Sedge�. The density of each plot
corresponds to the value of ��p�. The 2D histogram distribution of each edge profile has an arch-shape. In order to keep the same relative relation of
Sint and S� (or M�), all of the 2D histograms shown in this paper were plotted within the domain described as �Sint;S�� 2 �a; b� � �0; 4�bÿ a�=15�,
where �a; b� depends on each application. (c) Typical discrete classifications �high�p� for e1�x� and �med�p� for e2�x� to avoid misclassification due to
partial voluming. T2 should be selected based on the arch-shaped distribution observed in the 2D histogram ��Sint;Sedge� so that, as far as possible,
�med does not include voxels affected by the partial volume effect (green arch).



�high�p� � minfAhigh � ��Sint;Lh;Hh�;�high�p�g;
�high�p� � ��med�p�

� maxf��Sint;T1;1�; ��Sedge;T2;1�g;
�30�

where ��med�p� � 1ÿ�med�p� and Ahigh is the opacity value
for tissue ªmedium.º These discrete classifications can be
viewed as:

IF Sint is low AND Sedge is low

THEN �med�p� � 1 ELSE �high�p� � 1:

Using the above classification strategy, voxels not affected
by the partial volume effect can be separated from those so
affected.

4.2.2 Guideline 2: Using Second-Order Local Structures

We consider the second-order local structure model
h0�2
�x� � �I1 ÿ I2�h�2

�x;�r� � I2, (where

4�2 2 fsheet; line; blobg
and I1 > I2) based on (14), (15), and (16). The classification
of h0sheet�x� h0line�x�, and h0blob�x� is inherently ambiguous
using the original intensity Sint only. Fig. 6a shows
histograms for sheet, line, and blob plotted in a 2D feature
space whose axes are Sint and M�2

.
Based on the histograms, the feature vector p �

�Sint;M�2
� (or �Sint;S�2

�) can be utilized to classify the
voxels into two tissue classes, t � ��2; ��2�, where ��2

represents all other structures different from �2. Fig. 6b
illustrates the discrete classifications for this purpose. The
discrete classifications ��2

�p� and � ��2
�p� are specified as

��2
�p� � ��M�2

;T2;1�; �31�
and

� ��2
�p� � ���2

�p� � ��M�2
; 0; T2�: �32�

These discrete classifications can be viewed as:

IF M�2
is high THEN ��2

�p� � 1 ELSE � ��2
�p� � 1:

Using the above classification strategy, voxels with similar
intensity values can be classified into �2 structures and
others. Selecting a filter of the type �2 is a simple process.

This filter type directly corresponds to the local structure of
a tissue to be highlighted or suppressed, as shown in
Table 1. The filter width and its multiscale integration can
be determined according to the width response curves
shown in Fig. 3 if the actual width range of a target tissue
can be found.

4.2.3 Summary of Guidelines

The two procedures outlined above for improved tissue
classification using 3D local structures can be summarized
as follows:

Guideline 1 (dealing with the partial volume effect): At
the boundaries of tissues, intermediate intensity values
often exist that are not inherent to the tissues
themselves. When a tissue of interest has intensity
values similar to such intermediate values, misclassifi-
cation occurs. Discrete classification �med�p� in a 2D
feature space �Sint;Sedge� is a useful means of avoiding
such misclassification.

Guideline 2 (discriminating second-order features): When
a tissue of interest can be characterized by its line, sheet,
or blob structure, as well as its intensity values, discrete
classification ��2

�p� in a 2D feature space �Sint;M�2
�

(where �2 2 fsheet; line; blobg) is a useful means of
improving the classification.

Classification strategies are designed based on an inter-
active analysis of the local intensity structure of each tissue
class by repeating the following processes. First, unwanted
tissues that could be confused with the target tissue when
only the original intensity is used are identified Second, a 3D
local structure filter expected to be effective in disambiguat-
ing these tissues is selected based on the above two guidelines.
Finally, the discrete classification based on a 2D histogram
analysis is determined and then checked to see whether the
disambiguation power is sufficiently improved when the 2D
feature space defined by the original intensity and the filter
response is used. The above procedures are repeated for the
remaining tissues until the classification of all the tissues
becomes satisfactory. Since discrete classification can be
viewed as an IF±THEN±ELSE rule, its sequential application
represents a nested set of the IF±THEN±ELSE rules.
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Fig. 6. Guideline 2: Using second-order local structures. (a) 2D histograms ��p� for sheet (blue plots), line (green plots), and blob (red plots) models,
where p � �Sint;M�2

� ��2 2 fsheet; line; blobg�. For the multiscale filter M�2
, �1 � 1:0, s � ���

2
p

, n � 4 in (19). For the local structure model
h0�2
�x;�r�; �r � 2:0. The sheet and line models had spherical and circular shapes, respectively, whose radii were 64. The unit is voxels. Left:

p � �Sint;Msheet�. Middle: p � �Sint;Mline�. Right: p � �Sint;Mblob�. (b) Typical discrete classification ��2
�p� for classifying each second-order

structure. T2 should be selected so that unwanted structures are removed while the target second-order structures are extracted.



4.3 Implementation

From the practical aspect, one problem to be addressed is
the implementation of the multichannel tissue classification
method using software packages [25], [26] or hardware
volume renderers intended for conventional volume ren-
dering. We implemented the method using the volume
rendering modules in the Visualization Toolkit (vtk,
version 2.0) [25]. These vtk modules generate both
unshaded and shaded composite images from a scalar
volume (in our all experiments, unshaded composite
images were generated). To deal with a vector-valued
volume for multichannel tissue classification, we convert a
vector-valued volume to a scalar volume using the discrete
classification �j�p� (27) for each tissue class tj (j � 1; . . . ; n),
where we assume minf�j�p�;�k�p�g � 0 (j 6� k). We assign
to each voxel the scalar value q, uniquely determined by its
intensity value Sint and tissue class tj given by �j�p�. If it
can be assumed that pi 2 �0; R�, one possible form of q is
q�j;Sint� � Sint � �jÿ 1� � R. The full range assigned to a
scalar value of each voxel, which is 16 bits in the vtk,
is divided into subrange segments with length R and
the segmented range of the interval ��jÿ 1� � R; j �R� is
used to represent the intensity value Sint for the tissue
class tj. Thus, �j�Sint� and cj�Sint� for each tissue class
tj are shifted to ��q�j;Sint�� and c�q�j;Sint��, where
q�j;Sint� 2 ��jÿ 1� � R; j �R�. Fig. 7 shows an example of
classification using p1 � Sint and p2 � Ssheet. Voxels are
classified into tissue classes t1 and t2 using �1�p1; p2� and
�2�p1; p2�, respectively (Fig. 7, left). For the voxels classified
using �1�p1; p2� (i.e., j � 1), their intensity values Sint are
converted by q�j;Sint� � Sint � �jÿ 1� � R � Sint. Similarly,
for the voxels classified using �2�p1; p2� (i.e., j � 2),
q�j;Sint� � Sint �R. The segmented ranges of the interval
�0; R� and �R; 2R� are assigned to voxels with t1 and t2,
respectively. Since Sint � L with respect to voxels with t2 in
Fig. 7, the interval substantially becomes �L�R; 2R� (Fig. 7,
right).

5 EXPERIMENTAL RESULTS

5.1 Simulation Using Synthesized Images

Simulation experiments were performed to show how local
intensity structures can be used to improve the performance
of tissue classification. Typical situations in medical volume
data were modeled by synthesized images. The contrast

and contrast-to-noise ratio were used as measures to
quantify the improvement.

5.1.1 Avoiding Misclassification Due to Partial Voluming

We assumed that three tissue classes, t1, t2, and t3, existed in
the volume data. Let I1, I2, and I3 be the average intensity
values of t1, t2, and t3, respectively, and suppose
I1 > I2 > I3. We modeled a situation where a ªmediumº-
intensity tissue (t2), which was assumed to be the target
tissue, was surrounded by a ªhighº-intensity tissue (t1) on a
ªlowº-intensity background (t3). Fig. 8a shows a cross
section of the synthesized volume with random noise
(where I1 � 100, I2 � 25, and I3 � 0), and Fig. 8b depicts a
volume-rendered image of the synthesized volume viewed
from an oblique direction. A thin rectangle of medium
intensity (whose profile was a Gaussian function with a
height and standard deviation of 25 and 1.0, respectively)
was surrounded by an oval-shaped wall of high intensity
(whose profile was a Gaussian function with a height and
standard deviation of 100 and 3.0, respectively). The goal
was to visualize the target tissue t2 through the surrounding
tissue t1 without the effect of partial voluming, that is, the
intrusion of unwanted intermediate intensities between the
surrounding tissue t1 and the background t3.

Guideline 1 was utilized to classify the voxels into two
tissue classes, t � (ªhigh,º ªmediumº) using the feature
vector p � �Sint;Sedge�, where �f � 1:0 in (11) for Sedge.
(Hereafter, the unit is voxels if not specified.) Fig. 8c shows
rendered images obtained using multichannel classification.
The images in the left and middle frames, rendered with
two different opacities, were intended to visualize only the
target tissue ªmedium.º In these images, the contrast of the
target tissue was sufficiently high since the effect of
overlapping unwanted intensities was mostly removed
due to their high gradient magnitude. The right frame is a
color-rendered image of the ªhighº- (white) and ªmediumº-
(pink) intensity regions. In this case, both structures were
clearly depicted by the different colors. Fig. 8d shows
rendered images obtained using single-channel classifica-
tion based on the original intensity, Sint. In the left and
middle frames, the target tissue was only vaguely imaged
due to unwanted intermediate intensities. In the color-
rendered image (right frame), the two tissues were not well-
separated. Fig. 8e shows 2D histograms for the whole
volume (left) and the segmented regions containing only
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Fig. 7. Implementations of multichannel tissue classification on a conventional single-channel classifier. Voxels classified by �1 and �2 (left) are

assigned to �0; R� and �L� R; 2R� (right), respectively (see text).



the target tissue (right). In the histogram for the whole

image, an arch-shaped distribution corresponding to the

ªhighº intensity tissue was observed and, thus, the target

tissue ªmediumº could be effectively classified using

Guideline 1. Fig. 8f shows 1D histograms of Sint, which

indicate that single-channel classification of the target tissue

was inherently difficult due to unwanted intermediate

intensities. The opacity functions are shown with the

histograms.
We quantitatively evaluated our multichannel classifica-

tion method. Because our aim was to enhance the

visualization of target tissues, measures that would demon-

strate the quality of the resultant rendered images were

used as the evaluation criteria rather than measures of

classification accuracy. For this purpose, we used the

contrast C between the target tissue and background, and

the contrast-to-noise ratio CNR [27]. We chose the defini-

tions of C and CNR given by

C � It ÿ Ib �33�
and

CNR � It ÿ Ib
�ht�2

t � hb�2
b�

1
2

; �34�

where It, �
2
t , and ht, and Ib, �

2
b , and hb are the average

intensity, variance, and number of pixels of the target tissue
region and of the background in a rendered image,
respectively [27]. CNR, which represents a normalized
tissue contrast that is invariant to linear transformation of
intensity, is widely used to evaluate essential tissue contrast
improvements in the visualization of medical data when
contrast materials are used during data acquisition [28] or
postprocessing methods are applied to acquired data [29].
Fig. 8g shows C (left) and CNR (right) plotted for the
rendered images using both single- and multichannel
classification. C was also plotted for an ideal rendered
image generated from a volume comprised of only the
target tissue without noise. It is empirically known that, in
volume rendering, the contrast of target tissue is largely
dependent on the opacity. Thus, we also evaluated the
effect of opacity on C and CNR. Using single-channel
classification, the contrast C was maximum when the
opacity was 0.2 and became similar to the ideal case in
the low-opacity range (� 0:05). Using multichannel classi-
fication, C was nearly equal to the ideal case, except in the
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Fig. 8. Simulation for avoiding misclassification due to partial voluming (Guideline 1). (a) Cross section of synthesized volume. (b) Volume-rendered
(VR) image of synthesized volume viewed from an oblique direction. (c) (Classification with 3D local structure) VR images of medium-intensity
tissues using multichannel classification with low (0.1) and high (0.4) opacity values (left and middle) and color rendering of the medium (pink) and
high (white) intensity tissues (right). (d) (Classification with original intensity) VR images of the medium-intensity region using single-channel
classification with low (0.1) and high (0.4) opacity values (left and middle) and color rendering (right). (e) 2D histograms ��Sint;Sedge� for whole
volume (left) and subvolume including only medium-intensity tissues (right) with opacity functions used for multichannel classification. Each opacity
function had a constant value in the domain shown in the histograms with pink lines for medium-intensity and light-blue lines for high-intensity
tissues. (In all the VR images in this paper, the opacity function had a constant value in the domain indicated in the histogram.) The opacity values for
the color renderings were 0.1 (medium) and 0.01 (high) for the pink and light-blue domain, respectively. (f) 1D histograms ��Sint� for whole volume
(thin) and medium-intensity subvolume (bold) with opacity functions for single-channel classification. The subvolume histogram was amplified so that
it could be compared with the whole volume one. (In all the subvolume histograms shown in this paper, similar amplification was performed.) The
opacity functions had the same contant values as for multichannel classification in the interval shown in the histogram. (g) Plots of contrast C (left)
and contrast-to-noise CNR (right) with variable opacity. In the ideal case, CNR should be infinity for every opacity value.



large-opacity range (� 0:4), and decreased monotonically
with the opacity. The contrast-to-noise ratio CNR signifi-
cantly decreased at large opacity values using single-
channel classification, but was much higher and almost
constant using multichannel classification methods. In
summary, using multichannel classification, the ideal
contrast could be obtained over a wider range of opacity,
and CNR was significantly high, which results in clear
visualization with easy parameter adjustment. Using single-
channel classification, the opacity needed to be sufficiently
small to balance C and CNR, which results in vague
visualization with difficult parameter adjustment.

5.1.2 Blob and Sheet Classification

We considered a situation where blobs were surrounded by
a sheet structure and the intensity values of the two types of
structure were similar. Blob and sheet structures can be
regarded as representative of nodules and cortices, respec-
tively. We modeled blobs of various sizes (which were 3D
isotropic Gaussian functions variable in height and width
[standard deviation], with an average height and standard
deviation of 100 and 3.0, respectively) surrounded by the
same sheet structure as that described in Section 5.1.1.
Fig. 9a shows a cross section of the synthesized volume
with random noise, while Fig. 9b depicts a volume-
rendered image of the synthesized volume viewed from

an oblique direction. The blobs were surrounded by an
oval-shaped wall. The goal was to visualize the blobs (the
target tissues) through the surrounding sheet structure.

Guideline 2 was utilized to classify the voxels into two
tissue classes, t � (ªsheet,º ªblobº) using the feature vector
p � �Sint;Ssheet�, where �f � 4:0 for Ssheet. Fig. 9c and Fig. 9d
show rendered images obtained using multi and single-
channel classification, respectively. Using multichannel
classification, the contrast of the blobs was sufficiently high
since the effect of the overlapping sheet structure was
mostly removed. Using single-channel classification, how-
ever, the blobs were only vaguely imaged due to unwanted
sheet structure overlap, although the contrast could be
improved by opacity adjustment. Fig. 9e shows the opacity
functions with 2D histograms. In the histograms, the sheet
structure is distributed along a diagonal (left) while the blob
structures are distributed only in the area with very low
Ssheet values (right). These histograms clarify the reason
why the two structures could be effectively classified using
Guideline 2. Fig. 9f shows 1D histograms for Sint which
indicate the inherent difficulty of single-channel classifica-
tion. Fig. 9g shows plots of C and CNR, which confirm the
effectiveness of multichannel classification. Using single-
channel classification, visualization of the blobs was
possible only in the low-opacity range (� 0:1), resulting in
insufficient contrast.
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Fig. 9. Simulation of blob and sheet classification (Guideline 2). (a) Cross section of synthesized volume. (b) VR image of synthesized volume
viewed from an oblique direction. (c) (Classification with 3D local structures) VR images of blobs using multichannel classification with low (0.05) and
high (0.1) opacity values (left and middle) and color rendering of the blob (pink) and sheet (white) structures (right). (d) (Classification with original
intensity) VR images of blobs using single-channel classification with low (0.05) and high (0.1) opacity values (left and middle) and color rendering
(right). (e) 2D histograms ��Sint;Ssheet� for whole volume (left) and subvolumes including only blob tissues (right) with opacity functions for
multichannel classification. The opacity values for the color rendering were 0.1 (blob) and 0.02 (sheet) in the pink and light-blue domains,
respectively. (f) 1D histograms ��Sint� for whole volume (thin) and blob subvolumes (bold) with opacity functions for single-channel classification. For
monochrome rendering, the same opacity value was assigned to both the intervals shown by pink and light-blue lines to maximize the visibility of the
blob tissues. For the color rendering, the opacity was 0.02 (blob) and 0.02 (sheet) for pink and light-blue intervals, respectively. (g) Plots of C (left)
and CNR (right) with variable opacity.



5.2 Medical Applications

We applied the proposed classification method to four

different medical applications using volume data obtained

with CT and MRI scanners. Each of the applications has a

specific aim in areas such as diagnosis, medical research, or

surgical planning. For these applications, different multi-

channel tissue classification strategies were designed using

3D local intensity structure filters. In Figs. 10, 11, 12, and 13,

the (a) series of figures show an original CT or MR slice

image, the (b) series show 2D histograms with the

multichannel classification strategy and opacity functions,

the (c) series show 1D histograms with conventional

single-channel opacity functions (the height of 1D opacity

functions are roughly related to their opacity values), and

the (d) and (e) series show the results rendered with

different opacity values using multi and single-channel

classification, respectively.

5.2.1 Visualization of Pelvic Bone Tumors

Fig. 10 shows the results of bone tumor visualization from

CT data of the pelvis. The aim was to visualize the

distribution of bone tumors and localize them in relation
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Fig. 10. Visualization of pelvic bone tumors from CT data. (a) Original CT image. (b) 2D histograms ��Sint;Ssheet� for whole volume (left) and
manually traced tumor regions (right) with opacity functions for multichannel classification, where Sint 2 �1000; 2200�. The opacity functions for the
tumors (pink lines) and bone cortex (light-blue lines) are shown. (c) 1D histograms ��Sint� for whole volume (thin) and tumor regions (bold) with
opacity functions for single-channel classification. (d) (Classification with 3D local structures) VR images of tumors using multichannel classification
with low (0.1) and high (0.4) opacity values (left and middle) and color VR image (right) of tumors (pink, opacity 0.1) and bone cortices (white, opacity
0.02). (e) (Classification with original intensity) VR images of tumors using single-channel classification with two opacities (left and middle) and color
rendering (right). The opacity values were 0.1 for tumors and 0.01 for bone cortex. (f) Color VR images of manually traced tumor regions. (g) Plots of
C (left) and CNR (right) with variable opacity.



to the pelvic structure for biopsy planning, as well as
diagnosis [30]. We used 40 CT slices with a 512 � 512 matrix
(Fig. 10a). Both the slice thickness and reconstruction pitch
were 5 mm. The original voxel dimensions were 0.82 � 0.82
� 5 (mm3). After the matrix was reduced to half in the xy-
plane, the volume data were interpolated along the z-axis
using sinc interpolation so that the voxel was isotropic; its
dimensions were then 1:643 (mm3).

Healthy bone cortex tissues and bone tumors have
similar original CT values. However, cortices are sheet-like
in structure while tumors are not. The classification strategy
was based on Guideline 2. We classified the voxels into two
tissue classes t � (ªcortex,º ªtumorº) using the feature
vector p � �Sint;Ssheet�, where �f � 1:0 for Ssheet (Fig. 10b).
The right frame of Fig. 10b shows the 2D histogram for the
manually traced tumor regions. It should be noted that the
tumor regions were mainly distributed in the area with a
relatively low Ssheet value.

In Fig. 10d and Fig. 10e, the left and middle frames
depict rendered images of only the tumor component at two
opacities. The right frames show the color renderings for
both bone tumors and cortices. Fig. 10f shows the rendered
color image generated from the tumor regions manually
traced by a radiology specialist, which is regarded as an
ideal visualization. The color rendering of Fig. 10d was

well-correlated with that of Fig. 10f (the ªidealº image) and
the bone tumors were visualized considerably better than in
Fig. 10e. However, nontumor regions were also detected,
mainly due to partial voluming of bone and articular space
in Fig. 10d. Fig. 10g shows plots of C and CNR, which
exhibit similar characteristics to those observed in
Section 5.1 and confirm the usefulness of the proposed
multichannel classification.

5.2.2 Visualization of the Brain Developmental Process

Fig. 11 shows the results of visualizing the brain develop-
mental process of a newborn baby from MRI data. The aim
was to visualize the brain developmental process called
myelination, the process by which the myelin sheath is
created in the subcortical brain, in relation to the skin and
brain surfaces [31]. We used 124 MR image slices with a
256 � 256 matrix (Fig. 11a). The original voxel dimensions
were 0.7 � 0.7 � 1.5 (mm3). The data were interpolated
along the z-axis using sinc interpolation so that the voxel
was isotropic (0:73 mm3).

Skin (and also subcutaneous fat) has higher intensity
values than brain tissues, including the cortex and myelin.
The skin and brain tissues were classified using Guideline 1.
The left and middle frames of Fig. 11b show histogram
��Sint;Sedge� for the whole 3D image. Since the histogram
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Fig. 11. Visualization of brain development process from MRI data. (a) Original MR image. (b) 2D histograms with classification strategy and opacity
functions for multichannel classification. Left and middle: 2D histogram ��Sint;Sedge�, where Sint 2 �0; 360�. Low density (left) and high density
(middle) distributions are displayed with different density ranges. The opacity function for skin (pink lines) and discrete classification for brain tissues
(shaded gray area) are shown. Right: 2D histogram ��Sint;Ssheet� for voxels classified as brain tissues, where Sint 2 �50; 110�. The opacity functions
for the cortex (light-blue lines) and myelin (green lines) tissues are shown. (c) 1D histogram ��Sint� with opacity functions for single-channel
classification. (d) (Classification with 3D local structures) VR images of skin (pink), brain cortex (white), and myelin (green) using multichannel
classification. Left: The opacity values were 0.02, 0.005, and 0.04 for skin, brain cortex, and myelin, respectively. Right: The opacity for skin was
zero. (e) (Classification with original intensity) VR iamges using single-channel classification with the same opacity values as (d).



had a very wide dynamic range, low density (left) and high

density (middle) distributions were displayed with differ-

ent density ranges. In the left frame, an arch-shaped

distribution can be observed, as was seen in the left frame

of Fig. 8e. The main cluster of the skin regions is found

around the bottom of the right arm of the arch (left). Brain

tissues with low Sedge values (middle) were further

classified into myelin and other tissues. While the intensity

values of myelin were relatively high as compared with

those of other brain tissues, they gradually changed and

were similar to those of the brain cortex in the lower

intensity region. However, brain cortices are sheet-like in

structure, whereas myelin is not. Myelin was thus classified

using Guideline 2 with the sheet filter in the ambiguous

intensity range (the right frame of Fig. 11b). In summary,

we classified the voxels into three tissue classes t � (ªskin,º

ªcortex ,º ªmyel inº) us ing the fea ture vec tor

p � �Sint;Sedge;Ssheet�, where �f � 1:0 for Sedge and �f �
1:0 for Ssheet. The strategy is summarized as follows:

IF Sint is high OR Sedge is high THEN �skin�p� � 1;

ELSE IF Sint is high OR

Sint is intermediate AND Ssheet is low

THEN �myelin�p� � 1;

ELSE �cortex�p� � 1:

�35�
In Fig. 11d, the myelin tissues, which are V-shaped

subcortical brain structures, were clearly depicted in
relation to the skin and brain surfaces. Unwanted structures
classified as myelin tissues appearing in Fig. 11e, which
came from the boundaries of skin regions and brain
cortices, were significantly reduced using multichannel
classification.

5.2.3 Visualization of the Lung for Computer-Assisted

Diagnosis

Fig. 12 shows the results of visualization of the lung from
CT data aimed at computer-assisted diagnosis for the
detection of early-stage lung cancers [32], [33], [34]. The
goal was to visualize nodules in relation to the lung field,
vessels, and ribs. We used 60 CT image slices with a 512 �
512 matrix (Fig. 12a). The slice thickness and reconstruction
pitch were 2 mm and 1 mm, respectively. The matrix size of
each slice was reduced to 256 � 256, after which the voxel
dimensions were regarded as 0.78 � 0.78 � 1 (mm3). The
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Fig. 12. Visualization of lung for computer-assisted diagnosis of cancer detection from CT data. (a) Original CT image. (b) 2D histograms with
classification strategy and opacity functions for multichannel classification. Left: 2D histogram ��Sint;Mblob�, where Sint 2 �ÿ1000; 500�. The opacity
function for the nodule (green lines) and discrete classification for the nonnodule tissues (shaded gray area) are shown. Right: 2D historgram
��Sint;Mline� for voxels classified as nonnodule tissues. The opacity functions for vessels (red lines), bone (light-blue lines), and lung (purple lines)
are shown. (c) 1D histogram ��Sint� with opacity functions for single-channel classification. (d) (Classification with 3D local structures) VR images of
nodule (green), vessels (red), lung (purple), and bone (white) using multichannel classification. Left and upper right: The opacity values were 0.2,
0.1, 0.004, and 0.02 for nodule, vessles, lung, and bone, respectively. Top (left) and oblique (upper right) views are shown. Lower right: oblique view
with zero opacity for bone. (e) (Classification with original intensity) VR images using single-channel classification with the same opacity values and
view directions as (d) except that the nodule opacity was 0.1.



data were then interpolated along the z-axis using sinc
interpolation so that the voxel was isotropic.

While nodules, vessels, and other soft tissues have
similar CT values in original images, the nodules and
vessels have blob and line structures, respectively. The
multiscale blob filterMblob (Fig. 12b left) and the multiscale
line filter Mline (Fig. 12b right) were used to detect the
different widths of nodules and vessels according to
Guideline 2. In both the histograms shown in Fig. 12b, the
nodule and vessel components can be clearly observed. The
lung field (mainly air) and bone have low and high CT
values, respectively, in original images and they can be
classified using the conventional method. In summary, we
classified the voxels into four tissue classes t � (ªnodule,º
ªvessel,º ªlung,º ªboneº) using the feature vector
p � �Sint;Mblob;Mline�, where �1 � 2:0, s � ���

2
p

, and n � 3
in (19) forMblob, and �1 � 1:0, s � ���

2
p

, and n � 3 for Mline.
The strategy is summarized as follows:

IF Mblob is high THEN �nodule�p� � 1;

ELSE IF Mline is high THEN �line�p� � 1;

ELSE �lung�p� � 1; �bone�p� � 1:

�36�

The nodules and vessels were clearly depicted with
different colors using multichannel classification (Fig. 12d),
while it was difficult to classify soft tissues into different
categories using only intensity values (Fig. 12e).

5.2.4 Visualization of the Brain for Neurosurgical

Planning

Fig. 13 shows the results of visualization of the brain from
MR images. The visualization of brain vessels is particularly
useful for surgical planning and navigation [35]. The aim
was to visualize the relationships of the skin, brain surfaces,
vessels, and a tumor. Because, in this case, the tumor was
located near the ventricle, this also needed to be visualized.
We used 80 MR image slices with a 256 � 256 matrix
(Fig. 13a). The original voxel dimensions were 1.0 � 1.0 �
1.2 (mm3). The data were interpolated along the z-axis using
sinc interpolation so that the voxel was isotropic.

In the following, 3D local intensity structures were first
employed to classify the skin, brain surfaces, and vessels.
Next, the volume of interest (VOI) method was used to
classify the tumor and ventricle. The two classifications
were then combined to obtain final visualization.

In the histogram ��Sint;Mline� (Fig. 13b, left), the
distribution can be seen to branch out in two distinct
directions as Sint increasesÐa strong component along the
Sint axis, which mainly corresponds to the skin cluster, and
a relatively weak diagonal component, which mainly
corresponds to the vessel cluster. Thus, vessels were
classified using the Mline filter according to Guideline 2.
Nonvessel tissues were further classified into skin and other
tissues using Guideline 1 (Fig. 13b, middle). The brain was
further differentiated from nonskin tissues, which include
the brain and skull. Although the brain and skull had
similar intensity values, the brain could be classified using
the Ssheet filter with a relatively thick width (Guideline 2),
which enhanced the skull tissue (Fig. 13b, right). The
classification strategy for t � (ªvessel,º ªskin,º ªbrainº)
using p � �Sint;Sedge;Mline;Ssheet� is summarized as:

IF Mline is high THEN �vessel�p� � 1;

ELSE IF Sint is high OR Sedge is high

THEN �skin�p� � 1;

ELSE IF Sedge is low AND Ssheet is low

THEN �brain�p� � 1;

�37�

where �f � 1:0 for Sedge, �1 � 1:0, s � ���
2
p

, n � 3 for Mline,
and �f � 2:0 for Ssheet.

Using the single channel, it was quite difficult to
discriminate skin and vessels since they had similar
intensity distributions in the original intensity image
(Fig. 13e). Also, unwanted structures corresponding to the
skull were regarded as brain tissues. Using multichannel
classification, the classification accuracy was significantly
improved, although the helix of the ear and the rims of
biopsy holes were misclassified as vessels (Fig. 13d). The
color renderings using multichannel classification clearly
depicted the three tissues of interest.

The tumor and brain ventricle were classified using the
volume of interest (VOI) specified by the user. When a
tissue of interest is sufficiently localized and has sufficient
contrast compared with neighboring tissues, it can be
classified using a VOI whose shape is relatively simple
and easy to specify, for example, ellipsoidal or rectangular.
Let Btumor and Bvent be binary images whose pixel values are
one within the VOI and zero otherwise, where the VOI has
an ellipsoidal shape which includes the tumor and
ventricle, respectively. The tumor is brighter than neighbor-
ing tissues and the ventricle is darker. Thus, the classifica-
tion strategy using a VOI is given by

IF Btumor � 1 AND Sint is high THEN �tumor�p0� � 1;

ELSE IF Bvent � 1 AND Sint is low

THEN �vent�p0� � 1;

�38�
where p0 � �Sint;Btumor;Bvent�.

Fig. 13g shows a stereo pair of rendered images of the
skin, brain, vessels, ventricle, and tumor resulting from the
combination of the 3D local intensity structure and VOI
classifications. To obtain the image depicted in Fig. 13g,
strategy (38), whose opacity functions are shown in Fig. 13f,
was first applied, after which strategy (37) was applied for
the remaining voxels.

6 DISCUSSION AND CONCLUSIONS

We have described a novel approach to multichannel tissue
classification of a scalar volume using 3D filters for the
enhancement of specific local structures such as edge, sheet,
line, and blob. Here, we discuss the work from several
aspects and indicate the directions of future work.

6.1 Benefits of Local-Structure Enhancement
Filtering Combined with Volume Rendering

One of the key criteria for evaluating visualization methods
is the objectivity of rendered images. Although interactive
segmentation processes steered by an operator, usually a
physician or medical technician, are commonly involved in
extracting tissues of interest, these processes, including

SATO ET AL.: TISSUE CLASSIFICATION BASED ON 3D LOCAL INTENSITY STRUCTURES FOR VOLUME RENDERING 175



manual editing, not only increase the operator's burden, but
also make rendered images operator-dependent, that is,
lacking in objectivity. For example, in a task such as that
depicted in Fig. 10 (bone tumor visualization), not only is it
necessary for the radiologist to spend considerable time
interactively segmenting out all the tumor regions, even
then it is very easy for some of them to be overlooked. In
our proposed multichannel classification, tissues of interest
are characterized by explicitly defined classification rules
based on 3D local structure filters whose characteristics are
well-understood. Thus, more objective classification is
realized.

One problem in volume rendering is the difficulty of
adjusting opacity functions. In our multichannel classifica-
tion, parameter tuning is needed for the filtered responses,

as well as for the original intensity. This means that the
operator's burden is superficially increased. However, as
demonstrated in Section 5, 2D histograms used in multi-
channel classification tend to exhibit more distinctly
separated clusters corresponding to tissues of interest even
when their clusters cannot be segregated in a 1D histogram.
In practice, therefore, 2D histograms, which are essentially
2D projections of an m-dimensional histogram (m being the
number of features), guide the operator in properly
adjusting the opacity function parameters once the classi-
fication strategy has been designed. Thus, the operator's
burden is essentially reduced while the quality of rendered
images is significantly improved.

In summary, while a combination of perfect segmenta-
tion and surface rendering provides clear-cut visualization,
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Fig. 13. Visualization of brain for neurosurgical planning from MRI data. (a) Original MRI image. (b) 2D histograms with classification strategy and
opacity functions for multichannel classification. Left: 2D histogram ��Sint;Mline� (Sint 2 �0; 450�). The opacity function for vessel (red lines) and
discrete classification for nonvessel tissues (shaded gray area) are shown. Middle: 2D histogram ��Sint;Sedge� for voxels classified as nonvessel
tissues �Sint 2 �0; 450��. The opacity function for skin (pink lines) and discrete classification for nonskin tissues (shaded gray area) are shown. Right:
2D histogram ��Sint;Ssheet� for voxels classified as nonskin tissues �Sint 2 �0; 180��. The opacity function for brain is shown with light-blue lines. (c) 1D
histogram ��Sint� with opacity functions for single-channel classification. (d) (Classification with 3D local structures) VR images of skin (brown), brain
(white), and vessels (red) using multichannel classification. Left: The opacity values were 0.1, 0.07, and 0.025 for vessels, skin, and brain,
respectively. Right: The opacity for skin was zero. (e) (Classification with original intensity) VR images of skin, brain, and vessels using single-
channel classification. Left: The opacity values were 0.05, 0.05, and 0.025 for vessels, skin, and brain, respectively. Right: The opacity for skin was
zero. (f) 1D histograms within volumes of interest defined by Btumor and Bvent with opacity functions for the tumor (upper) and ventricle (lower). (g)
(Classification with 3D local structures and volumes of interest) VR images of skin, brain, vessel, tumor (yellow), and ventricle (cyan) resulting from
combined multichannel classification using 3D local intensity structures and volumes of interest. The opacity values were 0.2, 0.03, 0.02, 0.4, and
0.05 for vessels, skin, brain, tumor, and ventricle, respectively. A stereoscopic view can be obtained using the cross-eye method.



it suffers from the risk of fatal overlook, operator-
dependence, and operator's burden. Our approach, that is,
a combination of enhancement filtering and volume
rendering with opacity adjustment, provides more objective
visualization and greatly reduces the operator's burden.

The following future work is envisaged: First, semiauto-
mated optimization of opacity functions should be inves-
tigated. As our method now stands, opacity function
parameter tuning is manually performed and is not based
on mathematical criteria. We consider that such criteria will
be obtainable by analyzing 2D histograms of whole and
sampled data (as shown in Fig. 10b). However, the sampled
data should not be acquired by time-consuming manual
tracing. We are now building an interactive system for
opacity function optimization based on whole and sampled
data acquired by specifying a tissue of interest using a
simple VOI shape. Second, the utility of 3D local structures
should be evaluated from the clinical point of view. Each of
the medical problems referred to in Section 5.2 is clinically
important. We believe that clinical validation of our
method, using a large set of volume data for each specific
medical area, is an important aspect of future work.

6.2 Effect of Anisotropic Voxels

Our 3D local structure filtering methods assume the
isotropy of voxels in the input volume data. While we use
sinc interpolation preprocessing in the third (z-axis) direc-
tion to make voxels isotropic, such preprocessed data are
inherently blurrier in the third direction. The effect of
anisotropic blurring on 3D filtering depends on the
directions of local structures. For example, sheet (line)
structures with narrow widths easily collapse when sheet
normal (line) directions are close to (deviate from) the third
direction. Three-dimensional local structure filtering would
not be so effective in these cases. In recent work related to
this problem, the effect of anisotropic voxels on the width
quantification of sheet structures and its dependence on
sheet normal directions were investigated in [36]. The
results showed that anisotropy has a considerable effect on
quantification accuracy. In the near future, however, the
acquisition of volume data with (quasi-)isotropic voxels is
expected to become much more common because of recent
advances in CT and MR scanner technology in terms of
high speed and resolution, such as multislice CT scanners
[37], which means the problem of anisotropic voxels will
become much less troublesome.

6.3 Design of a Classification Strategy

We have demonstrated classification strategies based on
two guidelines: an edge filter for removing partial voluming
by suppressing the edge structure and second-order local
structure filters for highlighting or suppressing sheet, line,
or blob structures. These local structures were combined
with the original intensity to define a multidimensional
feature space. The classification strategies were designed
based on an interactive analysis of the local intensity
structure of each tissue class following the two suggested
guidelines. Although the processes for strategy design
described in Section 4.2 are relatively straightforward, in
practice they often involve trial and error because the
criteria for filter selection are somewhat intuitive and the

resultant classification strategy is not guaranteed to be

optimal. Future work should therefore include the devel-

opment of an automated method of ascertaining the optimal

strategy, which will involve optimal filter type selection, as

well as parameter adjustment. One way to accomplish it is

to use traditional pattern classification methods based on

multidimensional feature space analysis. Another possible

approach would be to use an expert system which

constructs an optimal strategy from examples of target

(positive) and unwanted (negative) tissues [38], [39].

APPENDIX A

DERIVATION OF WIDTH RESPONSE CURVES FOR

SECOND-ORDER STRUCTURES

The normalized response of the sheet filter to the sheet

model, Ssheetfhsheet�x; �r�;�fg, is written as

Ssheetfhsheet�x; �r�;�fg � � � ÿ d2

dx2
G�x;�f�

� �
� hsheet�x; �r�;

�39�
where � is the normalization factor. The width response

cu rv e for the she e t s t ru c t u re i s d ef ine d by

Ssheetfhsheet�0; �r�;�fg, where 0 � �0; 0; 0�.
The sheet structure with variable width �r is modeled by

hsheet�x; �r� � exp ÿ x2

2�2
r

� �
�

������
2�
p

�rG�x;�r�;
�40�

where G�x;�r� is the 1D Gaussian function. By combining

(39) and (40), we have:

Ssheetfhsheet�x; �r�;�fg

� � �
������
2�
p

�r ÿ d2

dx2
G�x;�f� �G�x;�r�

� � �41�

� � �
������
2�
p

�r ÿ @2

@x2
G x;

����������������
�2
f � �2

r

q� �� �
; �42�

in which we used the relation

G�x;�1� �G�x;�2� � G�x;
����������������
�2

1 � �2
2

q
�:

Since

d2

dx2
G�x;�� � x2������

2�
p

�5
ÿ 1������

2�
p

�3

� �
exp ÿ x2

2�2

� �� �
; �43�

the width response curve for the sheet is given by

Ssheetfhsheet�0; �r�;�fg � ��r����������������
�2
f � �2

r

q� �3

� �

�2
f

�
�f
�r

� �2

������������������
�f
�r

� �2
�1

r !3
:

�44�
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Thus, Ssheetfhsheet�0; �r�;�fg is essentially a function of
�f
�r

when� � �2
f ,anditsmaximumis 2

� ��3p �3 �� 0:385�when
�f
�r
� ���

2
p

.

Using similar derivations, when the normalization factor
� � �2

f is multiplied, the width response curve for the line is
given by

Slinefhline�0; �r�;�fg �
�2
f�

2
r����������������

�2
f � �2

r

q� �4
�

�f
�r

� �2

������������������
��f�r�

2 � 1
q� �4

;

�45�
whose maximum is 1

4 �� 0:25� when
�f
�r
� 1.

The width response curve for the blob is given by

Sblobfhblob�0; �r�;�fg �
�2
f�

3
r����������������

�2
f � �2

r

q� �5
�

�f
�r

� �2

������������������
�f
�r

� �2
�1

r !5
;

�46�
whose maximum is 2

3 �
��
3
5

q
�5�� 0:186� when

�f
�r
�

��
2
3

q
.

APPENDIX B

SINC INTERPOLATION wITHOUT GIBBS RINGING

The sinc interpolation along the third (z-axis) direction is
performed by zero-filled expansion in the frequency
domain [22], [23]. Let f�i� (i � 0; 1; . . . ; nÿ 1) be the profile
in the third direction. In the discrete Fourier transform of
f�i�, f�i� should be regarded as cyclic and then f�nÿ 1� and
f�0� are essentially adjacent. Unwanted Gibbs ringing
occurs in the interpolated profile due to the discontinuity
between f�nÿ 1� and f�0�. Thus, Gaussian-shaped slopes
were added at the beginning and end of f�i� to avoid the
occurence of unwanted ringing before the sinc interpola-
tion. Let f 0�i� (i � ÿ3 � �; . . . ; 0; 1; . . . ; nÿ 1; n; . . . ; 3 � �� n)
be the modified profile, which is given by

f 0�i� �
G�i;�� � f�0�; i � ÿ3 � �; . . . ; 0
f�i�; i � 0; . . . ; nÿ 1
G�iÿ n� 1;�� � f�nÿ 1�; i � n; . . . ; 3 � �;

8<: �47�

where G�x;�� is the Gaussian function and the variation
is sufficiently smooth everywhere, including between
f�3 � �� n� and f�ÿ3 � ��. The discrete Fourier transform of
f 0�i� was performed (we used � � 4). After the sinc
interpolation of f 0�i�, the added Gaussian-shaped slopes
were removed.
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