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AbstractÐThe goal of this paper is to present an appropriate method for the segmentation of lines at intersections (X-junctions) and

branches (T-junctions), which can be regarded as local regions where lines occur at multiple orientations. A novel representation called

ªorientation spaceº is proposed, which is derived by adding the orientation axis to the abscissa and the ordinate of the image. The

orientation space representation is constructed by treating the orientation parameter, to which Gabor filters can be tuned, as a

continuous variable. The problem of segmenting lines at multiple orientations is dealt with by thresholding 3D images in the orientation

space and then detecting the connected components therein. In this way, X-junctions and T-junctions can be separated effectively.

Curve grouping can also be accomplished. The segmentation of mathematically modeled X-, T-, and L-junctions is demonstrated and

analyzed. The sensitivity limits of the method are also discussed. Experimental results using both synthesized and real images show

the method to be effective for junction segmentation and curve grouping.

Index TermsÐLine segmentation, multiple orientation lines, junctions, orientation bandwidth, orientation space.

æ

1 INTRODUCTION

LINE segmentation is widely used to extract curvilinear
structures as diverse as blood vessels in medical image

analysis [1], strokes in character recognition [2], [3], motion
and structure from multiple images [4], [5], and roads in
satellite image analysis [6], [7]. Since width and orientation
are the predominant and most informative features that
characterize a line, it is appropriate to analyze these two
parameters to segment lines in early vision. To detect and
separate intersections and branches, it is necessary to
analyze lines at local regions such as X- and T-junctions
where lines exist at multiple orientations. Koller et al. [8]
employed a nonlinear combination of linear multiple scale
filters to detect lines of various widths and select only a
single orientation for each pixel, but multiple orientations
were not considered in their method. Steger [9] recently
proposed an explicit model for lines and their surroundings
to extract lines and line widths with high precision;
however, this method cannot deal with junction segmenta-
tion because the direction of a line is estimated by an
eigenvector corresponding to the maximal absolute value of
the Hessian matrix eigenvalue. The key issues in segment-
ing lines at multiple orientations are:

1. how to represent multiple orientations at local
regions, i.e., junctions and

2. how to robustly extract the multiple orientation
features.

In this paper, which has already appeared in a preliminary
form in [10], we first focus on line orientation, and then on
multiple orientation line segmentation. Work on the
segmentation of lines at multiple orientations can be
divided into two categories: orientation and junction
analysis, and curve grouping and segmentation.

There are a considerable number of studies in the
literature relating to orientation and junction analysis [11]
[12], [13], [14], [15], [16], [17], [18], 19]. Perona proposed
detecting junction edges by searching for local maximal
responses with respect to continuous orientation [14], [18],
[19]. Here, we employ the concept of continuous orientation
set out by Perona and extend it to formulate a simple yet
powerful method for segmenting lines at multiple orienta-
tions. We construct a representation in the form of a three-
dimensional ªorientation space,º which is derived by
adding the orientation axis to the abscissa and the ordinate
of the image, and then formulate the problem of multiple
orientation segmentation as one of analyzing the 3D images
of the orientation space.

Curve grouping and segmentation received a large
amount of attention in early vision [20], [21], [22], [23],
[24], [25]. A smooth curve can be parameterized by the
length of an arc extending from a fixed point thereon to
another point. The winding angle, which is defined as the
cumulative angle described by the tangent as the curve
advances from the start point, varies continuously along the
arc length. Hence, multiple orientations exist at local
regions where curve intersections occur, as well as along
each curve. Consequently, we contend that the problem of
curve grouping can be regarded as one of multiple
orientation line segmentation. We utilize the winding angle
as a controlled orientation parameter and then deal with
curve grouping and segmentation in orientation space.

The orientation space representation is constructed by
treating the orientation parameter, to which Gabor filters
can be tuned, as a continuous variable. In this way, the
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real component of a complex Gabor filter, which is
characterized by an even symmetric receptive-field func-
tion, can be employed to enhance the lines in an image.
The segmentation of lines at multiple orientations is
achieved by thresholding 3D images in the orientation
space and then detecting the connected components
therein. The connected components group the orientation
continuities of lines and dissolve the global discontinuities
caused by intersecting lines or curves in the orientation
space. In constructing the orientation space, the selection
of a suitable orientation bandwidth for the Gabor filters is
important. If the orientation bandwidth is small, the
orientation selectivity is high, while the filter response of
a line having a high degree of curvature is low, that is, the
sensitivity to the line is low. We therefore need to achieve
a good trade-off of sensitivity and selectivity for optimum
multiple orientation line segmentation.

The paper is organized as follows: Section 2 describes the
method used to construct the orientation space using Gabor
filters as tunable filters to represent lines at multiple
orientations. In Section 3, the concept of multiple orientation
line segmentation using the orientation space is formulated.
In Section 4, we address the sensitivity limits of the proposed
method for segmentation of X-, T-, and L-junctions,
analytically given by mathematical line models, and reveal
the influences of selecting the filter scale on the sensitivity to
junction segmentation. In Section 5, experimental results
using synthesized image, biomedical images, and a scanned
Japan character image are presented. Finally, in Section 6, we
compare our work with previous related studies and
summarize our conclusions.

2 ORIENTATION SPACE REPRESENTATION BASED

ON GABOR FILTER

To extract lines that have an even symmetric structure, we
use as our tunable filter the real component of a complex
Gabor filter [26], which is characterized by an even
symmetric receptive-field function. The filter, which is
tuned to an arbitrary orientation to represent lines at
multiple orientations, is given by

f��x; y;�; �; !� � 1

2��2�
exp ÿ�

2x02 � y02
2�2�2

( )
cos�2�!x0�; �1�

where �x0; y0� � �x cos �� y sin �;ÿx sin �� y cos ��, � is the
preferred orientation parameter by which the filter is tuned,
! is the radial center frequency, and � is the aspect ratio of
the standard deviation along y to �Ðwhich is the standard
deviation along x. In the frequency domain, the filter is
represented by

F��U; V ;�; �; !� �
1

2
exp�ÿ2�2�2�U 0 � !�2� � exp�ÿ2�2�2�U 0 ÿ !�2�
n o
exp�ÿ2�2�2�2V

02�;

�2�

where �U 0 ; V 0 � � �U cos �� V sin �;ÿU sin �� V cos ��.
Fig. 1 depicts a half-peak of the Gabor filter in the

frequency domain. The orientation bandwidth 
 of the filter
is given by


 � 2 arctan
1

2��!�

� �
: �3�

As shown in (3), the orientation bandwidth varies inversely
as the product of �!�. When the orientation bandwidth is
small, the orientation selectivity of the filter is high.

Lines can exist at all possible orientations and multiple
orientations will occur at local regions such as line
intersections. In order to represent such multiple orienta-
tions at each pixel, an orientation space is constructed by
treating the orientation parameter � to which the filter is
tuned as a continuous variable. Based on the orientation
bandwidth, the orientation space representation of an
image is an embedding of the image into the orientation
parameter � family of derived images constructed by
convolution with the orientation parameter � family of the
kernels of the tunable filter. Let I�x; y� represent any given
image. Based on the filter f��x; y;�; �; !�, the linear
orientation space representation O�x; y; �� is defined as the
filter response at the orientation �, and is given by

O�x; y; �� �
Z Z

f��xÿ �; yÿ �;�; �; !�I��; ��d�d�: �4�

Property 1. In accordance with the even symmetry of the filter,
O�x; y; �� is a periodic with period �, that is, this means that
lines can only be represented over � orientations.

Property 2. O�x; y; �� is continuous along the orientation axis �
according to

lim
"!0

O�x; y; �ÿ "� � lim
"!0

O�x; y; �� "� � O�x; y; ��: �5�

Consequently, the multiple orientation feature at each pixel in
a given I�x; y� is continuous along the orientation axis �.

3 MULTIPLE ORIENTATION LINE SEGMENTATION IN

ORIENTATION SPACE

In this section, we address the optimization of the scale and
orientation parameters by which the filter is tuned to
optimally fit the width and orientation of a line, outline
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Fig. 1. Contour giving a half-peak of the Gabor filter in the frequency
domain, with aspect ratio �, radial center frequency !, and orientation �.

 denotes the orientation bandwidth of the Gabor filter, and4U and4V
represent the effective widths with respect to U and V . Here, 4U � 1

2��
and 4V � 1

2��� .



orientation space filtering for junction segmentation, solve
curve grouping by orientation space filtering and, finally,
we show how orientation space filtering is implemented.

3.1 Optimizing Scale and Orientation of Gabor Filter

In order to enhance a line characterized by width and
orientation, we begin by tuning the filter to the optimum
scale corresponding to the width of the line and then deal
with the orientation using the filter tuned to fit the line width.

Let us consider an ideal line model whose profile has a
Gaussian shape is given by

I�x; y;�L� � exp ÿ x2

2�2
L

� �
; �6�

where �L is the standard deviation of the profile.
The filter response R�x; y;�; �; !; �L� is given by

R�x; y;�;�; !; �L� �
�L����������������
�2
L � �2

p exp ÿ x
2 � 4�2�L

2�2!2

2��2 � �L2�
� �

cos
2�2�!x

�2 � �L2

� �
:

�7�
We assume the following constraint condition: �! � C,
where C � 0:5 in our experiments. The condition under
which R�x; y;�; �; !; �L� has a maximum of 1 at x � 0 for a
fixed �L is thus

�opt �
���������������������
4�2C2 ÿ 1
p

�L: �8�
The filter having the optimum scale corresponding to the
line width is thus obtained by (8).

The filter (shown in (1)) is normalized as follows:

f��x; y;�; �; !� � !

��
exp ÿ�

2x02 � y02
2�2�2

� 1

2

( )
cos�2�!x0�;

�9�
where �x0; y0� � �x cos �� y sin �;ÿx sin �� y cos ��. If lines
having the same height but different widths were given, the
filter responses have the same height using the normalized
filter (shown in (9)). Therefore, multiple scale integration
can be carried out using the normalized filter. We assume
that the filter is tuned so as to have the optimal scale and to
be normalized as below.

An ideal oblique line is obtained as follows by rotating
(6) with an angle �1:

I�1�x; y;�L� � exp ÿ�x cos �1 � y sin �1�2
2�2

L

( )
: �10�

The filter response R�x; y; �; �1; �; �; !; �L� of the oblique
line (10) at an orientation �, is thus given by

R�x; y; �; �1; �; �; !; �L�
� �!

��
�����
ad
p I�1�x; y;�L�
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l2 cos2 �1
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ÿ �

2!2 cos2 �

a
ÿ f

2 ÿ g2

4d
� 1

2

� �
cos

!�l cos � cos �1

a
� fg

2d

� �
;

�11�

where

a��� � �
2 cos2 �� sin2 �

2�2�2
� cos2 �1

2�2
L

;

b��� � ��
2 ÿ 1� sin 2�

2�2�2
� sin 2�1

2�2
L
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2 sin2 �� cos2 �

2�2�2
� sin2 �1

2�2
L

;

d��� � cÿ b2

4a
; l�x; y� � x cos �1 � y sin �1

2�2
L

;

f��� � 2�! sin �ÿ b

2a
cos �

� �
;

and

g�x; y; �� � l sin �1 ÿ b

2a cos �1

� �
:

There are three properties in R�xl; yl; �; �1; �; �; !; �L�
where xl cos �1 � yl sin �1 � 0 and 
 is the orientation
bandwidth of the filter (3):

Property 3. When � � �1, the filter response

R�xl; yl; �; �1; �; �; !; �L�
has a maximum of 1 at each point �xl; yl�.

Property 4. The filter response at an orientation �ÿ1 � �1 ÿ �0
��ÿ1 2 ��1 ÿ 


2 ; �1�� is symmetry with respect to that at another
orientation ��1 � �1 � �0 ���1 2 ��1; �1 � 


2��, that is,

R�xl; yl; �ÿ1 ; �1; �; �; !; �L� � R�xl; yl; ��1 ; �1; �; �; !; �L�: �12�

Property 5. If �
0 2 ��1 ÿ 


2 ; �1 � 

2� and �

0 0 62 ��1 ÿ 

2 ; �1 � 


2�

R�xl; yl; �0 ; �1; �; �; !; �L� � R�xl; yl; �0 0 ; �1; �; �; !; �L�: �13�
3.2 X- and T-Junctions in Orientation Space

Fig. 3a shows an oblique line and its filter response along
the orientation axis � at the center of the oblique line profile,
and Fig. 3b and Fig. 3c depict X- and T-junctions and their
filter responses along the orientation axis � at the intersec-
tion centers of the X- and T-junctions, where the scale
parameter � of the filter is tuned as the optimum scale
corresponding to the widths of the lines shown in Fig. 3. As
shown in Fig. 3a, there is a local maximum corresponding to
the orientation of the oblique line in the filter response.
Fig. 3b and Fig. 3c show that, when the angle between the
two lines at the X- or T-junction intersection is large, two
local maxima, corresponding to each line segment orienta-
tion at the intersection, are detected in the filter response.
Hence, the multiple orientations at the junction intersection
centers can be represented and extracted in the orientation
space.

We use mathematical line models to analytically define
an ideal X-junction as:

X�x; y; �X; �L� �s I�1�x; y;�L� ÿ I�2�x; y;�L�
ÿ �

I�1�x; y;�L�
� s I�2�x; y;�L� ÿ I�1�x; y;�L�
ÿ �

I�2�x; y;�L�;
�14�

and an ideal T-junction as:
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T �x; y; �T ; �L� �s I�1�x; y;�L� ÿ I�2
s �x; y;�L�

ÿ �
I�1�x; y;�L�

� s I�2
s �x; y;�L� ÿ I�1�x; y;�L�

ÿ �
I�2
s �x; y;�L�;

�15�
where �X and �T given by j�1 ÿ �2j are the angles between

the two lines at the X- and T-junction intersections,

respectively, I��x; y;�L� is given in (10), I�s �x; y;�L� is

defined as:

I�s �x; y;�L� � exp ÿ�x cos �� y sin ��2
2�2

L

( )
for y � 0, I�s �x; y;�L� � 0 for y < 0, and s�x� is defined as
s�x� � 1 for x > 0, s�x� � 1

2 for x � 0, s�x� � 0 for x < 0.
Coefficients KX��; �X� for an X-junction X�x; y; �X; �L�

and KT ��; �T � for a T-junction T �x; y; �T ; �L� can be

certainly found (given in Fig. 2), thus the filter response

O�cx; cy; �� at the intersection center (cx; cy) of an X-junction

or a T-junction in the orientation space can be approxi-

mately expressed as:

O�cx; cy; �� �
KX��; �X��R�cx; cy; �; �1; �; �; !; �L�
�R�cx; cy; �; �2; �; �; !; �L��; for an X -junction

KT ��; �T ��R�cx; cy; �; �1; �; �; !; �L�
� 1

2R�cx; cy; �; �2; �; �; !; �L��; for a T-junction;

8>>><>>>:
�16�

where R�x; y; �; �0 ; �; �; !; �L� is given in (11).
There are three properties in O�cx; cy; ��.

Property 6. If the angle �X or �T (given by j�1 ÿ �2j) is greater

than a permissible value ��, the filter response O�cx; cy; �� has

bimodality, that is, there are two local maxima at �1 and �2,

respectively, a local minimum exists at �1��2

2 midway between

the two local maxima. In addition, the difference between the

local maxima and the local minimum in the case of X-junctions,

or the difference between the smaller of the local maxima and

the local minimum in the case of T-junctions becomes larger as

�X or �T becomes larger (also illustrated in Fig. 3b and Fig. 3c).

Property 7. The filter responses O�cx; cy; �� at orientations

�ÿ1 � �1 ÿ �0 ��ÿ1 2 ��1 ÿ 

2 ; �1�� a n d �ÿ2 � �2 ÿ �0

��ÿ2 2 ��2 ÿ 

2 ; �2�� are symmetry with respect to those at

other orientations ��1 � �1 � �0 ���1 2 (�1; �1 � 

2�� and ��2 �

�2 � �0 ���2 2 ��2; �2 � 

2�� respectively, that is,
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Fig. 2. Estimated coefficients KX��; �� for X-junctions and KT ��; ��
for T-junctions. Here, � � 2.

Fig. 3. (a) An oblique line, (b) , (c), and (d) X-, T-, and L-junctions, with their filter responses along the orientation axis � at the center of oblique line
profile, at the intersection centers of X-junctions at which the angle between two lines at each intersection is 15�; 20�; 30�, or 40� and T-junctions at
which the angle between two lines at the intersection is 10�; 20�; 40�, or 50�, and at the midpoints of the circular arcs at which the normalized
curvature are 0:01; 0:02; 0:09, and 1 at L-junctions. Here, the filter response can be considered as a function of the orientation �.



O�cx; cy; �ÿ1 � � O�cx; cy; ��1 �
O�cx; cy; �ÿ2 � � O�cx; cy; ��2 �;

�17�

where 
 is the orientation bandwidth of the filter (3).

Property 8. Let �x; y� be a point at a junction intersection and
�i�i � 1� be multiple orientations at the point �x; y�. If
j�i ÿ �jj > ���i 6� j�, then each point of �x; y; �i��i � 1� in the
orientation space O�x; y; �� satisfies:

@
@� O�x; y; ��

��
���i� 0

@2

@�2 O�x; y; ��
���
���i

> 0; for dark lines

@2

@�2 O�x; y; ��
���
���i

< 0; for light lines:

8>>><>>>: �18�

As depicted in Fig. 4, which outlines the concept of
orientation space filtering, one line at a given X-junction
is inclined at an orientation �1 and the other line at
another orientation �2. When we continuously tune the
filter along the orientation axis � at increments of 4� (we
used 4� � 1� in our experiments) to filter the X-junction
in the orientation space, in accordance with the orienta-
tion resolution of the filter, the filter responses show
relatively large magnitudes within ��1 ÿ 
0

2 ; �1 � 
0
2 � and

��2 ÿ 
0
2 ; �2 � 
0

2 �Ðwhere 
0 � 
Ðat the orientation axis �,
and have two local maxima at the orientation �1 and �2 in
the orientation space. According to Properties 6 and 7, if
j�1 ÿ �2j > ��, each line extracted by filtering in the
orientation space can form a connected component
therein and there is a one-to-one correspondence between
each connected component in the orientation space and
each line. By virtue of the continuity of the filter response
and the orientation selectivity of the filter, the connected
components in the orientation space are easily separated
using a threshold which is selected between the local
minimum and local maxima in the filter response.
Consequently, we can treat the problem of multiple
orientation line segmentation as one of detecting the
connectivity in the orientation space.

The limit in the permissible value �� of the angle between
the two lines at the intersection of an X-junction, as well as of
a T-junction, depends upon the orientation bandwidth 
 of
the filter and is regarded as the sensitivity limit of our
proposed method for X- and T-junction segmentation. The
behavior of the method with respect to the limitation in the
value of the angle between the two lines at X- and T-junction

intersections when the orientation bandwidth of the filter is
varied is demonstrated in Section 4 by means of a simulation
analysis using mathematical line models.

3.3 Intersecting Curves in Orientation Space

A 2D smooth curve ~
�s� is parameterized by the arc
length s: ~
�s� � �x�s�; y�s��, where s 2 �0; L�. The winding
angle ��s� along the arc length s is defined as the
cumulative angle described by the tangent when the curve
advances from s � 0 to s � L1 and is regarded as a
continuous function of the arc length s owing to the
smoothness of the curve.

By treating the winding angle ��s� as a controlled
orientation parameter along the arc length s and embedding
~
�s� with the filter f��s��x; y;�; �; !�Ðwhich is continuously
tuned to the winding angle ��s�Ðinto the orientation space,
the orientation space representation O�x�s�; y�s�; ��s�� of
~
�s� can be obtained. By virtue of the continuity of the
winding angle ��s�, O�x�s�; y�s�; ��s�� is a continuous
function with respect to the arc length s and the curve
~
�s� can be projected as O�x�s�; y�s�; ��s�� in the orientation
space. Consequently, in the orientation space, a connected
component originating from the curve ~
�s� can be formed
and the path of the curve ~
�s� along the arc length s is
continuous to enable tracking in the connected component.
From our conclusion that each connected component
uniquely corresponds to the respective position in the
global geometry of each curve and groups the orientation
and curvature continuities of each curve, the global
discontinuity arising from intersecting curves can be
dissolved in the orientation space, that is, intersecting
curves can be separated and segmented in the orientation
space. Therefore, curve grouping can be achieved by
orientation space filtering.

Since filtering a curve in the orientation space is a special
process that represents a curve as a sequence of line
segments, that is, tangent line segments at the winding angle
��s� along the arc length s, the sensitivity to a curve having a
high degree of curvature is low when the orientation
selectivity of the filter is high. For this reason, the curvature
of a curve influences the curve segmentation performance.
We employ an L-junctionÐwhich has circular arcs with a
normalized curvature �L and is analytically defined as a
mathematical line model in the AppendixÐto locally
analyze the sensitivity of our method to the normalized
curvatures of curves. Fig. 3d depicts L-junctions with their
filter responses along the orientation axis � at the midpoints
of the circular arcs. As depicted in the figure, when �L is
large, two local maxima are detected in the filter response,
the L-junction is then fragmented into two line segments; on
the other hand, when �L is small, only one local minimum is
detected in the filter response and the L-junction is
segmented according to its orientation and curvature
continuities. Unlike the cases of X-junctions, T-junctions,
and corner segmentation, a filter response having only one
maximum is desirable for the segmentation of an L-junction
having a relatively small �L.

The performance of the curve segmentation method and
the relationship between its sensitivity to curvature and the
orientation selectivity of the filter are discussed in Section 4
by means of a simulation analysis using L-junctions.
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Fig. 4. Outline of the concept of orientation space filtering.



3.4 Implementation of Orientation Space Filtering

The implementation of the proposed method for segment-

ing and separating multiple orientation lines can be

summarized as follows:

1. After filtering the image in the orientation space,
thresholding is performed to obtain the connected
components. The result of thresholding is repre-
sented by

OT �x; y; �� � S�O�x; y; �� ÿ T1�; for light lines
S�T1 ÿO�x; y; ���; for dark lines;

�
�19�

where T1 is the threshold and S�x� is defined as

S�x� � 1 for x > 0, otherwise S�x� � 0. The con-

nected components in OT �x; y; �� can be considered

to correspond to each segmented line.
2. Labeling is then carried out for the connected

components in OT �x; y; ��. Let the result of labeling
be OL�x; y; ��. While the noise components are
suppressed by orientation space filtering, some noise
components may still remain. However, these
components will be removed by thresholding
because their volume should be small. Let li be the
set of pixels in an image that compose a line i. Then,
each li is segmented by mapping the points with the
same label in the orientation space to a 2D image
plane. That is,

li 2 f�x; y�j�OL�x; y; �� � i�; and Vi > T2g; �20�
where i denotes the number of connected compo-

nents labeled in OL�x; y; �� corresponding to li, Vi is

the number of voxels of the connected components

labeled i, and T2 is the threshold.

4 SENSITIVITY ANALYSIS USING MATHEMATICAL

SIMULATIONS

4.1 Sensitivity Limits for Segmentation of Junctions

The orientation bandwidth of the filter decisively affects the

sensitivity limit of the method. As indicated in (3), the

orientation bandwidth 
 depends upon the filter parameters:

�, !, and �. Since we assumed that �! � C, 
 is inversely

proportional to�. Therefore, if� is large, 
 is small, that is, the

orientation selectivity is high. Experimental simulations for

segmenting X-, T-, and L-junctions were performed by

changing �, the angle �X at an X-junction intersection, the

angle �T at a T-junction intersection, and the normalized
curvature �L of the circular arc at an L-junction, respectively.

As described above, the threshold T1 (19) is selected so as
to be between the local maxima and local minimum
midway between the local maxima in the filter response
at an X-junction intersection center, as well as between the
smaller of the local maxima and local minimum midway
between the local maxima in the filter response at a T-
junction intersection center along the orientation axis �. In
order to be able to reliably segment lines at multiple
orientations, it is desirable to have a relatively wide range
within which the threshold T1 can be selected. Based on the
results of experimental simulations, we computed the
minimal �X at an X-junction intersection where the local
minimum is less than half of the local maxima, the minimal
�T at a T-junction intersection where the local minimum is
less than half of the smaller of the local maxima, and the
maximal �L at an L-junction where the filter response has
only one local maximum, for � � 1; 2; 3; 4, and 5. Table 1
illustrates the computed results. As given in the table, when
� becomes larger, the values of minimal �X and �T at X- and
T-junctions that can be separated and segmented become
small, that is, the sensitivity of the method for segmenting
X- and T-junctions becomes higher. On the other hand, if �
is small, the maximal �L at an L-junction that can be stably
segmented with its orientation and curvature continuities
becomes larger, that is, the sensitivity to high degree of
curvature becomes higher, while the orientation selectivity
becomes lower as � becomes smaller.

Taking account of the behavior characteristics of the
minimal angles �X , �T and the maximal curvature �L in our
subsequent experiments, we employed � � 2 to achieve a
good trade-off between sensitivity and selectivity.

4.2 Influences of Selecting Filter Scales on
Sensitivity to Segmentation of Junctions

We have tuned the scale parameter � of the filter as the
optimum scale fitting the width of a line (8). In order to
reveal the influences of selecting the filter scale � on the
sensitivity to segmentation of X-, T-, and L-junctions, we
continuously treat the orientation parameter � and the scale
parameter � of the filter to construct an orientation-scale
space, and then investigate the sensitivity variations therein.

As illustrated in Fig. 5 (first column and second column),
in the orientation-scale space, two local maxima correspond-
ing to two orientations at the intersection center of the X- or
T-junction are detected along the orientation axis � at each
scale �. Fig. 5 (third column) shows that the magnitude in the
filter response R��� corresponding to the local maximum R
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TABLE 1
Minimal Angle �X, Minimal Angle �T , and Maximal Normalized Curvature �L when � � 1; 2; 3; 4; 5



in Fig. 5 (second column) is greater than that in the other
filter response r��� corresponding to the local minimum r in
Fig. 5 (second column) over the scale axis �. Therefore, the
X-and T-junctions can be segmented by the threshold T1 (19),
whose range is wide, over the scale axis �. If an X-junction
with �X , a T-junction with �T , and a scale � were given, we
respectively let the local maxima in the filter response at the
X-junction intersection and the smaller of the two local
maxima in the filter response at the T-junction intersection
along the orientation axis � at the scale � be RX��X; �� and
RT ��T ; �� and the local minimum midway between the local
maxima at the X- and T-junction intersection be rX��X; ��
and rX��T ; ��. We define two criterions �X��X; �� as: If
rX��X; �� exists,

�X��X; �� � 1ÿ rX��X; ��
RX��X; �� ;

otherwise �X��X; �� � 0, and �T ��T ; �� as: if rT ��T ; �� exists

�T ��T ; �� � 1ÿ rT ��T ; ��
RT ��T ; �� ;

otherwise �T ��T ; �� � 0, to evaluate the sensitivity to
segmentation of X- and T-junctions by varying �X , �T , and
�. If �X��X; �� or �T ��T ; �� is larger, the two linesÐwhich
have an intersection angle �X at an X-junction, or an
intersection angle �T at a T-junctionÐcan be separated by
the threshold T1 having a relatively wide range. Fig. 5
(fourth column) shows two 3D-plots and their contour lines
illustrating �X��X; �� and �T ��T ; ��. As illustrated in the
figure, when �X > 28� and �T > 26�, both �X��X; �� and
�T ��T ; �� are greater than 0:5. Therefore, the sensitivity to

segmentation of X- and T-junctions is independent of the
tuned filter scale �, while the magnitude in filter response
becomes smaller as � becomes larger.

Fig. 6 (first column and second column) show the filter
response at the midpoint of a circular arc in an L-junction in
the orientation-scale space and two filter responses at the
optimum scale �opt and a large scale �L along the orientation
axis �, respectively. As depicted in the figures, only one
local maximum is detected in the filter responses at �opt, as
well as small scales along the orientation axis �; however,
two local maxima are detected in filter responses at large
scales such as �L, that is, if � is large, the L-junction should
be fragmented as two segments. In case that two local
maxima are detected in the filter response along the
orientation axis �, we let the local maxima be RL��L; ��,
and the local minimum between the two local maxima be
rL��L; ��. We also define a criterion �L��L; �� as: If rL��L; ��
exists,

�L��L; �� � 1ÿ rL��L; ��
RL��L; �� ;

otherwise �L��L; �� � 0, to evaluate the sensitivity to
segmentation of L-junctions by varying �L and �. If
�L��L; �� � 0, the L-junctions can be segmented; if
�L��L; �� > 0, the L-junctions should be fragmented into
two segments. Fig. 6 (third column) gives a 3D-plot
illustrating �L��L; ��. As illustrated in the figure, the range
of scale � where �L��L; �� � 0 becomes narrower as �L
becomes larger. Again, for a large �L, the sensitivity to
L-junction segmentation becomes lower, that is,
�L��L; �� > 0, as � becomes larger. Therefore, the sensitivity
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Fig. 5. (First column from left): The filter responses in the orientation-scale space at the intersection centers of an X-junctionÐat which one line is
inclined at 40�, the other line at 75�Ðand a T-junctionÐat which one line is inclined at 90�, the other line at 125�. Here, each filter response is
represented by an intensity image. (Second column): The filter responses at the optimum scales �opt along the orientation axis � at the X- and T-junction
intersections. (Third column): The filter responses at the X- and T-junction intersection centers along the scale axis � at the three orientations at which
the two local maxima and the local minimum between them are detected in the filter response along the orientation axis �; here, the three orientations
are 40�, 75�, and 58� in the case of the X-junction and are 90�, 108�, and 125� in the case of the T-junction. (Fourth column): Two 3D-plots representing
�X��X; �� and �T ��T ; �� and their contour lines at the �X-� and �T -� planes.



to L-junction segmentation depends upon the normalized
curvature �L and the tuned scale � of filter.

5 EXPERIMENTAL RESULTS

5.1 Synthesized Image

We synthesized an image including a sinusoidal curve and
a spiral, as well as a lineÐwhere the height of each line
profile is 1, and �L � 1Ðand imposed additive Gaussian
noise with the standard deviation �n of 0:4 and a mean of 0
on it. Fig. 7a shows the synthesized image. Along the arc
length s of the spiral, the normalized curvature ��s� of the
spiral varies continuously and, from the periphery to the
center, the winding angle ��s� of the spiral continuously
varies from 0� to 900�. There are a number of X-junctions
with different angles �X and T-junctions with different
angles �T at the intersections. In order to cover all the
winding angles of the spiral, we constructed the orientation
space of the image where the orientation variable � is set
from 0� to 900�. In constructing the orientation space, based
on Property 1 that the orientation space representation
O�x; y; �� is a periodic with period 180�, we continuously
filtered the image by dealing with the orientation parameter
from 0� to 180� at increments of 1� and then assigned the
filtered results to the orientation space. Fig. 7b depicts the
spiral, curve, and line in the orientation space and shows
that, after filtering, the three connected components, which
group the orientation and curvature continuities of the two
curves and the line in the orientation space, respectively,
were separated and then obtained in the orientation space.

The global discontinuities were also dissolved by the
connected components. It should be particularly noted that,
by virtue of the winding angle ��s� with respect to the arc
length s of the spiral, the connected component (colored red
in Fig. 7b) arising from the spiral advances spirally in the
orientation space. Fig. 7c shows the result of segmentation;
it can be seen that the two curves and the line were
segmented out by orientation space filtering. Fig. 7d gives
the maximal and minimal thresholds between which the
spiral, curve, and line are segmented out to obtain the
topology shown in Fig. 7b when the standard deviation of
additive Gaussian noise imposed is increased from 0 to 0:4
in increments of 0:2. As demonstrated by the segmented
acquired image, curve grouping and segmentation can be
realized by orientation space filtering.

5.2 Real Images

5.2.1 Coronary Angiogram

Fig. 8a shows an X-ray coronary angiogram. There are
several overlapping arteries in the left coronary. In Fig. 8b,
the terminological abbreviations and ordering numbers of
the main coronary arteries according to the American Heart
Association classification are shown superimposed on the
angiogram. As can be seen in the figure, arteries SEP2 and
SEP3 intersect with D1 forming two X-junctions; LCX, D1,
SEP2, and SEP3 connect to LAD forming three T-junctions;
and AC, OM, PL-1, and PL-2 connect to LCX forming four
T-junctions. In order to segment arteries in the coronary
angiogram, we used �L � 2:0 to estimate the artery widths,
and C � 0:5 and � � 2 to construct the orientation space.
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Fig. 6. (Left): An L-junction with a circular arc and the filter response at the midpoint of the circular arc in the orientation-scale space, where

�L � 0:04. (Middle): The filter responses at the optimum scale �opt and a large scale �L along the orientation axis �. (Right): A 3D-plot representing

�L��L; �� and its contour line at the �L-� plane.

Fig. 7. (a) Synthesized image of three intersecting curves with additive Gaussian noise. The image consist of a sinusoidal curve, an Archimedes
spiral, and a horizontal line. (b) Three connected components corresponding to the two curves and line extracted in the orientation space and
colored. The �-axis is the orientation axis; the x- and y-axes correspond to the x- and y-axes in (a). (c) The three curves segmented by orientation
space filtering and colored. (d) Two plots giving the minimal and the maximal threshold for the topology shown in (b) when the standard deviation of
additive Gaussian noise is varied from 0 to 0:4 in increments of 0:2.



According to the even symmetry of the filter, line structures
can only be represented over 180� orientations. We there-
fore dealt with the orientation parameter � from 0� to 180� at
increments of 1� to cover all the orientations of the coronary
arteries.

Fig. 8c shows the four filter responses along the orientation
axis � at the X-junction intersection A, the T-junction
intersection B, point C in the distal segment of PL-2, and
point D at which the gray-level is a great contrast to that at the
nearby background shown in Fig. 8a. Local minima pre-
sented in the filter responses correspond to multiple
orientations at each junction intersection in the coronary
owing to dark arteries. In filter response A, two local minima
corresponding to the two orientations at point A were
detected; there is only one local minimum in filter response
B due to the narrowness of the angle between D1 and LAD at
their intersection; the absolute magnitude of the local
minimum in filter response C is relatively small because the
gray-level at point C is close to that at the nearby background;
the absolute magnitude of the local minimum in filter
response D is relatively large due to the greater difference
in gray-level at point D and the nearby background. As can be
seen in Fig. 8d, 16 connected components were extracted in
the orientation space by selecting the threshold T1 (19) shown
in Fig. 8c and another threshold T2 (20).

Fig. 8e indicates that the 16 coronary arteries or artery
segments were effectively segmented, including arteries
appearing as X- and T-junctions. In Fig. 8e, the main
coronary arteries are seen to be well-detected by orientation
space filtering, in contrast to their depiction in Fig. 8b.
However, there are the following limitations in the
segmentation of the coronary arteries (shown in Fig. 8e).

1. The branch structure between the arteries SEP1 and
LAD is too complex to be segmented out for the
three reasons: First, the root of SEP1 connects to the
root of LAD forming a T-junction with a narrow
intersection angle; second, the midsegment of SEP1
intersects the proximal segment of LAD, forming an
X-junction which also has a narrow intersection
angle; third, the width of SEP1 differs from that of
LAD and the root of SEP1 is near LAD.

2. The arteries LAD and D1 at the T-junction B were
detected, but they were not able to be separated
because only one local minimum was detected in the
filter response B shown in Fig. 8c.

3. The artery PL-1 was fragmented into seven segments
due to the large magnitude of the normalized
curvature at each of its inflection points.

4. The distal segment of artery PL-2 was not detected
due to the small absolute magnitude of the local
minimum in filter response at each of points therein
(e.g., the filter response C shown in Fig. 8c).

5.2.2 Spatiotemporal Image of a Microvessel

Fig. 9a shows a microscopic image of a rat mesentery

microvessel. In order to measure the motion of leukocytes
flowing along the microvessel shown in Fig. 9a, we

generated a spatiotemporal image whose spatial axis is

parallel to the vessel region contour to visualize the motion
of leukocytes flowing along a microvessel [27], [28]. A

leukocyte, which is sphere-like and limited in diameter, is
not as deformable as an erythrocyte. Also, the velocity of

leukocytes is relatively limited. Hence, in a spatiotemporal

CHEN ET AL.: ORIENTATION SPACE FILTERING FOR MULTIPLE ORIENTATION LINE SEGMENTATION 425

Fig. 8. (a) An X-ray coronary angiogram with several overlapping arteries. The points A, B, C, and D are referred to in (c). The white arrow indicates
stenosis. (b) Abbreviations and ordering numbers of the main coronary arteries. (c) Filter responses at points A, B, C, and D marked in (a) along the
orientation axis � and threshold T1. (d) Sixteen connected components were extracted and labeled in the orientation space. The �-axis is the
orientation axis; the x- and y-axes correspond to the x- and y-axes in (a). (e) Sixteen arteries or artery segments were segmented and labeled.
Overlapping arteries in (a) were effectively separated.



image, each leukocyte trace appears as a slanting linear
structure that has a limited width corresponding to the
diameter of the leukocyte and a relatively long length.
Fig. 9b shows the spatiotemporal image. Three leukocyte
traces can be seen. Since the leukocytes are obscured by
many erythrocytes, in the spatiotemporal image the
leukocyte traces suffer from erythrocyte interruption and
are buried in the noise, making them difficult to identify
clearly. Also, two of the leukocyte traces are shown as
intersecting because one of the leukocytes has caught up
with another one. To extract the leukocyte traces in the
spatiotemporal image, we employed �L � 2:0 to estimate
the widths of the traces and C � 0:5 and � � 2 to construct
the orientation space. Because the leukocyte velocity is
limited, we dealt with the orientation parameter � from 0� to
90� at increments of 1� to cover all the directions of the
leukocyte traces.

Fig. 9c illustrates the interim result of orientation space
filtering, in which connected components extracted in the
orientation space by the threshold T1 (19) can be seen. It is
clear that the volumes of the connected components
corresponding to the leukocyte traces are greater than the
volumes of the connected components caused by noise.
Fig. 9d shows the result of orientation space filtering by
thresholding the interim result with the threshold T2 (20) to
remove the small connected components caused by noise.
Three connected components corresponding to the three
leukocyte traces were obtained in the orientation space.
When these three traces were segmented (Fig. 9e), the
motion of each individual leukocyte could be extracted and
measured.

5.2.3 Scanned Japanese Character Image

Fig. 10 (the upper left of a, b, and c) show a scanned
Japanese character at which the height of profile is 1 and the
Japanese character scattered with additive Gaussian noise
with a mean of 0 and standard deviation �n, where �n � 0:5,
or 1:0. The Japanese character is made up of four

overlapping strokes. We employed �L � 2:0 to estimate
the widths of the strokes and dealt with the orientation
parameter � from 0� to 359� at increments of 1� to cover all
the winding angles of the strokes. Fig. 10 (the upper right of
a, b, and c) depicts the interim results of orientation space
filtering. As depicted in the figures, several small connected
components caused by noise components were extracted,
while the connected components corresponding to the
strokes in the Japanese character were obtained and
separated in the interim results using the threshold T1

(19). Fig. 10 (the lower left of a, b, and c) show, the final
result of segmenting the Japanese character by orientation
space filtering. The noise components were removed by the
second threshold T2 (20) and the connected components
corresponding to the strokes in the Japanese character were
extracted. As a result of these strategies, the strokes in the
Japanese character with different levels of additive Gaus-
sian noise were segmented and labeled (Fig.10 (the lower
right of a, b, and c)). When �n � 1, the five connected
components were obtained and then the longest arc-like
stroke was fragmented into two segments, while the other
strokes were segmented out.

6 DISCUSSION AND CONCLUSIONS

We have described a method for the segmentation of lines
at multiple orientations using orientation space filtering.
The sensitivity limits of the method were revealed using
mathematical simulations. The influence of threshold
selection on the reliability of segmentation was also
discussed. Finally, the effectiveness of the method in
segmenting lines at multiple orientations was demonstrated
using a synthesized image and three real images.

Both scale and orientation are very informative features
for early vision. The scale space concept introduced by
Witkin [29] and subsequently explored in detail by Yuille
and Poggio [30], Babaud et al. [31], and Lindeberg [32],
[33], has been effectively applied as a feature space to
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Fig. 9. (a) One frame from a microscopic image sequence of a rat mesentery microvessel. The spatial axis is denoted as the s-axis. (b) A

spatiotemporal image of the microvessel in which there are three leukocyte traces appearing as dark lines and numbered. The t-axis is the temporal

axis. (c) An interim result of orientation space filtering. Not only the three connected components corresponding to the three leukocyte traces, but

also extra connected components (shown as white blocks) caused by noise were extracted by the threshold T1 in the orientation space. (d) Three

connected components corresponding to the three leukocyte traces were extracted in the orientation space. The �-axis in (c) and (d) is the

orientation axis; the s- and t-axes in (d) and (e) correspond to the s- and t-axes in (b). (e) The three leukocyte traces were segmented and labeled.



represent multiple scale features. In this paper, we focus
on the orientation feature to characterize lines and employ
the real component of a complex Gabor filter with even
symmetry as our tunable filter. We then construct a
feature spaceÐªorientation spaceº to represent the multi-
ple orientation features of lines by treating the orientation
parameter as a continuous variable based on the tunable
filter having orientation selectivity and a narrow orienta-
tion bandwidth. By virtue of the continuity, the problem
of multiple orientation segmentation is formulated as one
of finding the connectivity in the 3D orientation space.
Therefore, there is a novelty in the method that the
segmentation of lines at multiple orientations can be
achieved by thresholding 3D images of the orientation
space and then finding the connected componentsÐwhich
group the orientation and curvature continuities of lines,
as well as curves, and dissolve the global discontinuities
raising from intersecting curves and linesÐtherein. How-
ever, there is a drawback in the method that a great
amount of computation cost is needed.

We will compare our proposed method with previously
reported related methods in terms of orientation and
junction analysis, and curve grouping and segmentation.

Orientation and Junction Analysis. In previous related
work in the area of orientation and junction analysis,
multiple orientation features at each pixel in an image
have been detected by searching for local maximal
responses with respect to orientation using steerable
filters, and have been represented by polar plots [14],
[15], [17], [18], [19]; to finally extract and segment
junctions using these approaches, it is then necessary to
apply extra tracking and grouping algorithms. Our
method and previous work share certain similarities in
that both utilize filters having sharp orientation selectiv-
ity to represent multiple orientation features at junctions
in an image. However, unlike previous approaches, our
method avoids the need to employ tracking algorithms

to separate and segment junctions, because lines at
multiple orientations are represented and then segmen-
ted by the connected components in the orientation
space. The method is therefore both brief and powerful.

Curve Grouping and Segmentation. Previous approaches
to curve grouping have adopted continuity, smoothness,
and curvature constraints to estimate traces, curvatures,
and tangents of curves [20], [21], [24]. Elder and Zucker
[24] proposed employing an extended tangent represen-
tation to locally represent closure contours as a set of
tangent vectors and then grouping the tangent vectors
using a Bayesian model to realize contour grouping. Our
method differs from these approaches in that no form of
constraint or hypothesis is considered. Since each point
on a curve originates from the global geometry of the
curve and the winding angle varies continuously along
the arc length, after being embedded into the orientation
space by filtering, each curve can form a connected
component therein. Consequently, curve grouping and
segmentation can be concisely represented and realized
in the orientation space.

Since multiple orientation line segmentation is accom-
plished by thresholding in the orientation space, the
selection of the two thresholds T1 and T2 ((19) and (20))
also plays a key role in orientation space filtering. The first
threshold, T1, is selected so as to be between the local
maxima and the local minimum midway between the local
maxima in the filter response at an X-junction intersection
center, as well as between the smaller of the local maxima
and the local minimum midway between the local maxima
in the filter response at a T-junction intersection center
along the orientation axis �. The connected components
corresponding to the lines at the X-junction are obtained
and separated in the orientation space by means of a
suitably selected T1; in particular, if the local minimum is
less than half of the local maxima in the filter response, T1
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Fig. 10. (The upper left of (a), (b) and (c)): A scanned Japanese character and the Japanese character scattered with additive Gaussian noise with a
mean of 0 and standard deviations �n, where �n is 0:5 or 1. (The upper right of (a), (b) and (c)): Interim results of orientation space filtering with the
threshold T1. Several small connected components (shown as dark blocks) caused by noise components were extracted, while four connected
components for �n � 0 or 0:5 and five connected components for �n � 1 corresponding to the intersecting strokes in the Japanese character were
obtained. (The lower left of (a), (b), and (c)): The result of orientation space filtering. The small connected components were removed by the other
threshold T2, therefore, the intersecting strokes were segmented and labeled (The lower right of (a), (b), and (c)). The �-axis in the interim and final
results is the orientation axis.



can be selected within a wide range. The threshold selection

range is wide, which means that the sensitivity of the

method for segmenting X- and T-junctions is high. The

findings depicted in Fig. 7 showed that the efficient

threshold range that can be used to segment junctions

becomes narrower as the standard deviation of additive

Gaussian noise becomes larger; however, even at higher

standard deviations, some degree of threshold range could

still be obtained. Since the scale parameter � of the filter has

been tuned so as to fit the width of the line (8) and the

parameter � is set relatively large (� � 2) to give sharp

orientation selectivity, many noise components should be

suppressed by the filter and removed by the threshold T1.

However, as illustrated in the result (Fig. 10), not only the

connected components corresponding to the strokes at the

Japanese character but also connected components caused

by noise will be extracted in the orientation space by the

threshold T1 if the additive Gaussian noise standard

deviation becomes large. The second threshold T2 thus is

selected to effectively remove connected components that

are caused by noise and have relatively small volumes in

the orientation space. Our experimental results verified that

lines at multiple orientations could be reliably segmented

by selecting appropriate thresholds T1 and T2 in the

orientation space.
Segmenting lines of various widths and orientations is

very important and significant in early vision. With the aim

of integrating multiple scale and orientation features of

lines, we plan to develop multidimensional feature space,

such as orientation-scale space filtering. Additionally, we

believe our method has the potential to segment multiple

edges and combinations of edges and lines by adding the

imaginary component of the Gabor filter with odd

symmetry to extend our tunable filter so that it has a

quadrature pair and using the squared output of the

quadrature pair of the extended tunable filter to construct

the orientation space.

APPENDIX

L-JUNCTION LINE MODEL

The L-junction line model L�x; y; cx; cy; rL; �L�, which has a

circular arc with its center at �cx; cy�, a radius rL, and an

angle �
2 at the circumference, is analytically given by

L�x; y; cx; cy; rL; �L� �
exp ÿ �x�rLÿcx�2

2�2
L

� �
; y < cy

maxt exp�ÿ �xÿcxÿrL cos t�2��yÿcyÿrL sin t�2
2�2

L

�
n o

; x � cx; y � cy;
and � � t � 3�

2

exp ÿ �yÿrLÿcy�2
2�2

L

� �
;x > cx:

8>>>>>>><>>>>>>>:
�21�

The normalized curvature �L is defined by �L � �L
rL

. In a

particular case, according to (21), a corner can be defined by

L�x; y; cx; cy; 0; �L�, where rL � 0. We synthesized L-junc-

tions with different rL values.
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