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though the former used a well-formulated theory [5, 6], a
This paper addresses the problem of detecting mirror sym- portion to be analyzed needs to be segmented and to in-

metries of 3D shapes. Unlike previous methods, which involve clude the overall 2D shape. Moment analysis cannot there-
overall 3D shape data, our method uses a range image obtained fore be applied to locally symmetric shapes or incomplete
from one viewpoint. Also, the proposed method can be applied data such as occluded shapes. On the other hand, while
to detection of local as well as global symmetries. The method the latter approach is suitable both for detecting local sym-
consists of two stages. First, initial estimates of symmetric plane

metry and handling incomplete data, pointwise local sym-candidates are obtained using the Hough transform. As local
metry detection is often sensitive to noise.fragments aggregated by the Hough transform, we use the local

In order to identify 3D symmetry, a method based onsymmetry points determined by point pairs between occluding
moment analysis has been proposed for detecting variouscontour points and surface points. Next, the iteratively re-

weighted least-squares method is applied in order to perform global symmetries from octree data [7]. This method, how-
nonmaximum suppression and refinement of the parameter ever, suffers from the same problems as 2D moment-based
values. The method is further extended so as to extract curved methods. For example, symmetry detection is impossible
as well as planar symmetries. Two kinds of extensions are using a range image from one viewpoint, such as is obtained
proposed—fitting a quadratic function instead of fitting a using a typical range scanner [8]. A 3D shape description
plane, and extracting smoothed local surface symmetries, which

scheme based on local symmetry analysis also has beenrepresent a 3D extension of smoothed local symmetries. Experi-
reported [9], which is a 3D extension of the symmetric axismental results involving synthesized and real range images are
transform [1]. However, this work concentrated on thepresented.  1996 Academic Press, Inc.

theoretical aspects of the scheme and did not actually dem-
onstrate an efficient method for recovering symmetries.

1. INTRODUCTION Furthermore, because efficient recovery in the 2D versions
of the scheme involves overall shape analysis [1], it seems

Many objects have symmetries—both natural objects difficult to extend the method so as to handle incomplete
such as human faces, and man-made ones such as cars. 3D data. An efficient method for detecting rotational sym-
Furthermore, even if they do not possess global symmetry, metries of 3D shapes has been proposed [10], which is
most objects have local symmetries. As a means of describ- applicable for unsegmented and incomplete data; however,
ing 2D shapes in a unique and compact manner, symmet- this method depends on the special characteristics that
ries provide the natural axes of such shapes [1, 2]. Also, in solids of revolution possess.
describing 3D shapes, shape description algorithms should In this paper, we describe a mirror symmetry detection
recognize symmetry and encode it in the resultant descrip-

method which detects both global and local symmetries of
tions. In this paper, we address the problem of detecting

3D shapes using a range image from one viewpoint. Ourboth global and local symmetries of 3D shapes.
approach is based on a 3D extension of a method forThere have been two main approaches to 2D symmetry
detecting 2D local symmetries [2, 4]. Detecting mirror sym-detection, one based on moment analysis [3] and the other
metry of a 3D shape can be viewed as a problem of findingbased on pointwise local symmetry analysis [1, 2, 4]. Al-
three parameters which determine a symmetry plane. The
method for detecting 2D local symmetries [2, 4] suggests
the following basic strategy for finding 3D symmetric* E-mail: yoshi@image.med.osaka-u.ac.jp.
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planes; find symmetrical point pairs by testing all possible
point pairs for the mirror symmetry constraints, and esti-
mate the symmetric planes from symmetrical points deter-
mined by the symmetrical point pairs. However, such a
straightforward extension would give rise to problems on
computational cost, the reliability of symmetry detection,
and the accuracy of symmetry localization. The following
two improvements are therefore adopted to make the
above basic strategy practical. First, we reduce the number
of point pairs to be tested by considering only point pairs
between occluding contour points and surface points. From FIG. 1. Local mirror symmetry on surface.
a practical point of view, occluding contours have several
advantageous characteristics. Because occluding contours
are boundaries of visible surface, the symmetry conditions

ing contours. For each detected symmetry, the deviationcan be efficiently checked over as wide ranges as possible.
from the symmetry is computed and used at the aggrega-Also, detected local symmetries can be easily aggregated
tion stage. We then describe the procedure for aggregatingalong occluding contours into larger entities, like the recov-
the detected pointwise symmetries into symmetric planes.ery of 2D smoothed local symmetries. Second, we accu-
Since pointwise symmetries are sensitive to noise, andrately estimate the parameters of local symmetric planes
there can also be multiple symmetric planes in a rangeby combining the Hough transform and the interatively
image, we develop an accurate and stable method for deal-reweighted least-squares (IRLS) method [11]. The IRLS
ing with these problems.method is highly effective for both the nonmaximum sup-

pression of peaks detected in the Hough space and refine-
2.1. Local Symmetry Conditionsment of the parameter values. Most importantly, the pro-

posed method can be extended so as to extract curved
Let x1 and x2 be 3D positions, and n1 and n2 be surface

symmetries on surfaces as well as planar symmetries. Shape
normals at x1 and x2 , respectively (Fig. 1). The mirror

deformation such as bending can be appropriately de- symmetry conditions between these two points are given by
scribed by curved symmetries. We show that curved sym-
metries are stably extracted by any of the quadratic func-

(n1 1 n2) ? (x1 2 x2) 5 0, (1)tion and piecewise local symmetric plane fittings.
The organization of the paper is as follows: In Section

and2, we describe the conditions for checking whether point
pairs between occluding contour points and surface points

(n1 2 n2) 5 l(x1 2 x2), (2)exhibit symmetry, and formulate an accurate and stable
method for detecting planer symmetries which combines
the Hough transform and a subsequent refinement process where l is a scalar coefficient. Symmetry point xs and

normal ns of the local symmetry plane determined by theseusing the IRLS method. In Section 3, the method is ex-
two points are given bytended so as to extract curved symmetries. Two kinds of

extensions are described—fitting a quadratic function in-
stead of a plane, and extracting smoothed local surface

xs 5
x1 1 x 2

2
, (3)symmetries, which represent a 3D extension of smoothed

local symmetries [2]. In Section 4, we show experimental
results of planar and curved symmetry detection using both and
synthesized and real range images. In Section 5, we summa-
rize the work and discuss related problems.

ns 5
x1 2 x2

ux1 2 x2u
. (4)

2. DETECTING PLANAR SYMMETRIES
The symmetry conditions are checked between an occlud-
ing contour point and a surface point. Because accurateThe planar symmetry detection method consists of two

stages; detection of pointwise symmetries and their aggre- estimations of 3D positions and normals are difficult to
obtain on occluding contours using surface data acquiredgation. First, we describe the conditions used for detecting

pointwise local symmetries from a range image and occlud- from a range scanner, we use 2D occluding contours ex-
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X (tu1 1 (1 2 t)u2) (point A in Fig. 3a) on the profile
shape with respect to the detected symmetrical plane,
and compute the integral of the squared distance between
the ideal symmetrical point and intersection point
X(P(X(tu1 1 (1 2 t)u2) 1 sns)) of the range image surface
along the line of sight corresponding to the ideal symmetri-
cal points. If the discrete approximation of the integral is
smaller than a threshold value, the profile shape is judged
as symmetrical. However, if there is occlusion within the
profile, this measure includes some error (Fig. 3b). In this
paper, therefore, we consider the detection of only sym-
metries whose profile shapes do not contain occluded part.

FIG. 2. Normal interpolation at a point with sudden orientation change.

2.2. Accurate Estimation of Symmetric
Plane Parameters

tracted from a gray-level image. While the surface normal The symmetric plane including symmetric point xs and
is uniquely determined at a point on the 2D occluding having normal ns is represented as
contour because the 2D occluding contour orthogonally
intersects with the line of sight, the 3D position still has

nxx 1 nyy 1 nzz 5 r, (6)one degree of freedom along the line of sight. However,
we can determine the one degree of freedom in the position
by using one of the symmetry constraints (Eq. (1)), and the where ns 5 (nx , ny , nz)(unsu 5 1) and r 5 ns ? xs . Based on
symmetry condition can be checked by the other constraint the concept of the Hough transform, all the local symmetry
(Eq. (2)). When there is a surface point straddling a sudden points determined by point pairs satisfying the conditions
normal change, as shown in Fig. 2, surface normals are shown in Eqs. (1) and (2) are voted into the parameter
interpolated. We assume that such a surface point can have
any normal with the interpolated directions.

When two points satisfy the symmetry conditions, we
check further into the symmetry of the profile shape be-
tween these two points. The profile shape is extracted by
cutting a range image with the plane determined by these
two points and the origin of the viewer-centered coordi-
nate. We assume that a range scanner provides the 3D
position along a line of sight corresponding to each pixel.
The origin of the viewer-centered coordinate is defined as
the intersection point of all the lines of sight, that is, the
lens center. This condition holds for typical range scanners
[8]. Let u1 and u2 be 2D image coordinates of two points
satisfying the symmetry conditions, X(u) be the 3D posi-
tion stored in pixel u, and P(x) be the image projection
of the 3D position x. We then define the deviation from
symmetry of the profile shape as

d 5 E1

0
uX(tu1 1 (1 2 t)u2) 1 sns

(5)
2 X(P(X(tu1 1 (1 2 t)u2) 1 sns))u2 dt,

where s 5 2(xs 2 X(tu1 1 (1 2 t)u2)) ? ns . The intuitive
explanation of Eq. (5) is shown in Fig. 3a and can be
summarized as follows. Find the ideal symmetrical point FIG. 3. Deviation from symmetry of cross-sectional shape. (a) Ideal

symmetrical point and deviation from it. (b) Occluded situation.X(tu1 1 (1 2 t)u2) (point B in Fig. 3a) paired with point
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space. Weighted voting is performed based on the measure normal orientation. a is the weight parameter for the 3D
positions against the normals. W(m)

i is given byof the deviation from symmetry shown in Equation (5).
The weight value of each vote is computed by

W(m)
i 5 G(di ; sd) 3 G(«(m)

i ; s«), (10)
G(di ; sd), (7)

where G(x; s) 5 exp(2x2/(2s/2)), di is the deviation from
symmetry computed by Eq. (5), and «(m)

i is computed bywhere G(x; s) 5 exp(2x2/(2s2)), di is the deviation from
symmetry computed by Eq. (5). The estimated parameters
of the symmetric planes are obtained by detecting peaks

«(m)
i 5 !a(Zi 2 a(m21)

10 Xi 2 a(m21)
01 Yj 2 a(m21)

00 )2

1 (Pi 2 a(m21)
10 )2 1 (Qi 2 a(m21)

01 )2 . (11)in the parameter space. The parameter space of ns can be
represented by a geodesic dome [12]. The parameter space
of r is assigned to each cell of the geodesic dome represen-

The estimates at the (m 2 1)th iteration are used to selecttation.
inliers, that is, the data originating from the model. ByThere is, however, one major drawback with the Hough
weighting the squared error with G(«(m)

i ; s«), only the localmethod, which, is the bin size problem—i.e., deciding how
symmetry points which have come from the symmetryfinely the parameter space should be tessellated. If the
plane being estimated can contribute to the symmetrytessellation is too coarse the estimation will not be accu-
plane fitting. In the original formulation of the IRLSrate, but if it is too fine multiple peaks will occur around
method, s« is modified at each iteration by some ad hocthe true peak. To overcome this problem, we apply the
procedure. In our current implementation, however, s« isiteratively reweighted least squares (IRLS) method [11]
fixed and determined according to the distribution of 3Das a subsequent refinement process. The IRLS method
points in an input range image. Another standard devia-iterates least square fitting with adaptive selection of the
tion, sd , is determined according to the threshold values fordata originating from the model. By using the IRLS
the measurement of the deviation from symmetry, which ismethod the estimated parameters can be refined, while the
also determined based on the distribution of 3D points inmultiple peaks which have come from the same symmetri-
an input range image.cal plane converge to almost the same parameter values.

The strength measure of symmetry is given byFor each detected peak in the Hough space, we apply
the following refinement process. In order to formulate O

i
G(di ; sd) 3 G(«i ; s«), (12)the problem as a regression problem, we let the symmetric

plane be represented by

z 5 a10 x 1 a01y 1 a00 , (8)

where the z-axis is set so as to be in alignment with
the normal of the symmetric plane corresponding to the
detected peak. All the local symmetry points detected
using the method described in Section 2.1 are transformed
into this local coordinate system from the viewer-centered
coordinate system. The symmetric plane corresponding
to the detected peak is used as the initial estimates of
the IRLS method. At the mth iteration, symmetric plane
parameter values a(m)

10 , a(m)
01 , and a(m)

00 are reestimated
by minimizing

O
i

W (m)
i ha(Zi 2 a(m)

10 Xi 2 a(m)
01 Yi 2 a(m)

00 )2

(9)

1 (Pi 2 a(m)
10 )2 1 (Qi 2 a(m)

01 )2j,

where (Xi , Yi , Zi) is the 3D position of the symmetric point
FIG. 4. Block diagram of planar symmetry detection.of each local symmetric plane, and (Pi , Qi , 1) represents its
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where «i represents the values of Eq. (11) at the final 3.1. Estimating a Symmetric Surface Represented as a
Quadratic Functioniteration. This measure corresponds to the amount of sup-

ports for the estimated symmetric plane. Although the
A quadratic function can be represented as

strength measure of symmetry is not a normalized value,
the measure can be used to compare the relative strengths z 5 O

k1,#2
ak,xky, 5 a20x2 1 a11xy

(13)among detected symmetries.
Because the residual is measured along the z-axis direc-

1 a02y2 1 a10x 1 a01y 1 a00 .tion at each step of the IRLS fitting, the resultant symmet-
ric plane parameters and strength measure of symmetry Its partial derivatives are given by
are corrdinate-system-dependent. The coordinate system
for the IRLS fitting is determined based on the symmetric z

x
5 O

k?0
kak,xk21y, 5 2a20x 1 a11y 1 a10 , (14)plane parameter values corresponding to the peak in the

Hough space. As described earlier, there can be the multi-
ple peaks that originate from the same symmetrical plane. and
Thus, different coordinate systems may be chosen for fit-
ting the same symmetric plane, and then different values z

y
5 O

,?0
,ak,xky,21 5 a11x 1 2a02y 1 a01 . (15)may be estimated for the same symmetry. In order to avoid

this situation, the corrdinate system of the planer fit is
iteratively modified. At each iteration, the coordinate sys- Equation (9) is modified so as to fit the quadratic function.
tem is updated so that the z-axis is in alignment with the At the mth iteration, coefficients a(m)

k, of the quadratic
normal of the plane estimated at the previous planar fitting. function are estimated by minimizing
This coordinate system modification is iterated to reach
convergence or the iteration limit (10 times in our imple- O

i
W(m)

i Ha SZi 2 O
k1,#2

a(m)
k, Xk

i Y,
iD2

mentation). We confirmed experimentally that this itera-
tion usually reaches convergence within 10 times. Figure
4 shows a block diagram summarizing the method.

1 SPi 2 O
k?0

ka(m)
k, Xk21

i Y,
iD2

3. EXTRACTING CURVED SYMMETRIES
1 SQi 2 O

,?0
,a(m)

k, Xk
i Y,21

i D2
(16)

The method described in Section 2 can be extended so
as to detect curved as well as planar symmetries. We con-

1 b O
k1,52

(a(m)
k, )2J ,sider two possible approaches to such an extension—

fitting a quadratic function instead of a plane, and the
extraction of smoothed local surface symmetries, which where ok1,52(a(m)

k, )2 is introduced in order to stabilize the
represent a 3D extension of smoothed local symmetries [2]. second order coefficients. W(m)

i is given by
The former is appropriate for recognizing globally curved
symmetries; the latter, although a little computationally W(m)

i 5 G(di ; sd) 3 G(«(m)
i ; s«), (17)

expensive, makes it explicit where on the surface local
symmetries exist. where

«(m)
i 5 !a SZi 2 O

k1,#2
a(m21)

k, Xk
i Y,

iD2

1 SPi 2 O
k?0

ka(m21)
k, Xk21

i Y ,
iD2

1 SQi 2 O
,?0

,a(m21)
k, Xk

i Y ,21
i D2

. (18)

As the initial values of a10 , a01 , and a00 , symmetric plane the strength measure of symmetry shown in Eq. (12). If
this measure is significantly larger in the quadratic than inparameters estimated by minimizing Eq. (9) are used. The
the planar fit, the quadratic fit should be selected. Other-initial values of a20 , a11 , and a02 are zero. Similarly, higher-
wise, the planar fit should be used. In the former method,order polynomials can be fitted using the second-order
the threshold value used for the judgement should be de-coefficients as the initial values.

The final step is the judgement for selecting the planar pendent on the area and shape of the distribution of sym-
metric points from which each detected symmetry surfaceor the quadratic fit. One method is simply evaluating

a2
20 1 a2

11 1 a2
20 1 a2

02 P 0. The other method is to examine originated. Therefore, appropriate normalization is needed
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extracted sequences of local symmetries, which can be re-
garded as a 3D extension of the smoothed local symmetries
for 2D contours [2], ‘‘smoothed local surface symmetries.’’

4. EXPERIMENTAL RESULTS

We evaluated the methods using synthesized and real
range images. The methods was implemented on a Sun
Sparcstation 10 (Model 30). Normal images were computed
by local plane fitting at each point of the range images.FIG. 5. Piecewise extraction of local symmetric planes.

Occluding contours were extracted from an intensity image
in the case of using a real range image, and from the range
image itself in the case of using a synthesized range image.

for each symmetry as well as for each image. On the other
The extracted occluding contours were approximated by

hand, such normalization is not necessary if we use the
line segments and each line segment was further divided

ratios of the strength measures of symmetry of the planer
so as to have almost the same length. The midpoint of

fit to the quadratic fit. Therefore, in this paper, we use the
each divided line segment was considered as an occluding

strength measures of symmetry for this selection.
contour point, and the 2D orientation and position of the
divided line segment were used to compute a 3D normal

3.2. Extracting Smoothed Local Surface Symmetries at the point. In the following experiments, the number of
extracted occluding contour points was around fifty. The

The detection of curved symmetries can be also realized image size was 128 3 128 or 128 3 120 (pixels). A computa-
by applying the planar symmetry detection method only tion time of about two minutes required for estimating the
to the occluding contour points within a local window (with symmetric plane and quadratic parameters, and about 10
five-point width in our experiments). As shown in Fig. 5, we min for extracting the smoothed local surface symmetries.
consider the local window at every point on the occluding The method includes several parameters to be tuned. In
contour. At each point, the Hough transform is performed the experiments, the symmetry condition of Eq. (2) was
based on pointwise local symmetry checking between the checked as follows:
surface points and the occluding contour points within the
local window. Accurate planar symmetry parameters can n1 2 n2

un1 2 n2u
x1 2 x2

ux1 2 x2u
, 0.05. (21)then be estimated after the refinement process for the data

within the local window. The curved symmetries can be
extracted by linking local planar symmetries detected at

The threshold value for the deviation from symmetry, Td ,
each point along the occluding contour. Currently, we do

was 0.05 3 sp , where sp is the standard deviation of all
not use any sophisticated grouping procedure which incor-

the 3D positions of the range image. sp was used to normal-
porates the inaccuracy of the symmetry plane parameters

ize the object scale. The geodesic dome of the Hough space
and spurious local symmetries, such as dynamic program-

was tessellated into 320 triangular cells to represent ns , in
ming or a heuristic search for a linking process, because the

Eq. (6), and each triangular cell was assigned to a linear
local symmetries detected using the subsequent refinement

array having 32 cells to represent r. The maximum and
process are accurate and unambiguous enough for them

minimum values of r were 2 3 sp and 22 3 s , respectively.
to be linked only by checking similarities between the

Possible symmetry planes were represented in the coordi-
symmetric plane parameters at two adjacent occluding con-

nate system whose origin was the centroid of all the 3D
tour points. The conditions for linking two adjacent local

positions of the range image. In IRLS fitting of the plane
symmetries are

and quadratic function, the weight parameter a for the 3D
position data against the normals data was 1/s 2

p . The
uns 2 n9s u , Tn , (19) weight parameter b for stabilizing the quadratic fit was

s2
p . In the final least-squares fitting, however, b was zero

uXs 2 X9s u , Tp , (20) in order to compute the unbiased variance estimate appro-
priately. The standard deviations of the Gaussian function,
sd and s« , to determine the weight Wm

i , were Td/3 andwhere ns and n9s are the normals of symmetry planes esti-
mated at the adjacent occluding points, and Xs and X9s are 0.1, respectively. When we extract smoothed local surface

symmetries we require the threshold values of Eqs. (19)the 3D positions of local symmetries at adjacent points.
Tn and Tp are the thresholds for the linking. We call the and (20). These were Tn 5 0.15 and, Tp 5 0.05 3 sp .
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FIG. 6. Results of superquadric image. The detected symmetric planes are displayed as transparent surfaces, and superimposed with input range
image surface. (a) Shaded display of input range image. (b) Initial estimates of symmetric planes by the Hough method. The results are lined up
from left to right in order of height of the peaks detected by the Hough method. (c) Refined estimates of symmetric planes by the IRLS method.
Each result was obtained from the initial estimate shown just above it. (d) Recovered axial volumetric model. Oblique view (left) and side views
(middle and right) from the directions corresponding to the normals of two symmetric planes which determine the axis, which is set to the diagonal
direction in images. (e) Smoothed local surface symmetries.

As described above, all the parameter values were nor- of the symmetric plane parameters. The image size was
128 3 128 (pixels). Figure 6a shows the shaded image. Thismalized by the object scale using sp . In the experiments,
superquadric has three global mirror symmetries. Figurewe tried several degrees of fineness in the tessellation of
6b shows the symmetric planes corresponding to the fourthe Hough space. However, the final estimated parameters
highest peaks detected by the Hough transform. Figure 6cwere almost the same irrespective of the fineness of the tes-
shows the estimated symmetric planes after the refinementsellation.
process. Table 1 gives the estimated symmetric plane pa-

4.1. Superquadric Image rameters before and after the refinement process, and the
true symmetric plane parameters of the three principle
planes of the superquadric. After the refinement process,In the first experiment, we used a synthesized image of

a superquadric to evaluate the accuracy of the estimation more accurate estimates could be obtained. Also, the initial
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TABLE 1 shows the input images of deformed superquadrics and
Initial Estimates, Refined Estimates, and True Values the detected curved symmetric surfaces with different cur-

of Symmetric Plane Parameters vatures. Each superquadric shown in Fig. 7 was generated
by combining an isotropic bend along a principle axis usingPeak Initial Refined True
the method described in [16]. As shown in Fig. 7f, theno. estimates estimates values
detection of a symmetric surface with high curvature failed.

1 nx 0.547 0.542 0.550 The result of quadratic fitting got trapped in other periph-
ny 20.707 20.705 20.700

eral local symmetry. In this case, the symmetric plane usednz 0.448 0.456 0.455
as an initial fit of quadratic fit had already got trapped inr 115.0 116.8 116.4

2 nx 0.401 0.458 0.455 peripheral symmetry (Fig. 8).
ny 0.798 0.701 20.708 In order to evaluate the tolerance for the curvature
nz 0.450 0.547 0.540 quantitatively, we plotted the relation between curvature
r 115.8 140.0 138.3

k of deformed superquadrics and a2
20 1 a2

11 1 a2
02 estimated3 nx 20.647 20.702 20.700

by quadratic fitting in Fig. 9. If appropriate quadratic sym-ny 0.000 20.091 20.091
nz 0.762 0.706 0.708 metric surfaces have been found, a2

20 1 a2
11 1 a2

02 should
r 194.8 180.9 181.3 be roughly proportional to k2. In Fig. 9, the relation

4 nx 20.707 20.702 0.700 a2
20 1 a2

11 1 a2
02 Y k2 can be observed from k 5 0.0 to

ny 20.303 20.091 20.091
k 5 0.035. In other words, it can be considered that thenz 0.639 0.706 0.708
estimation procedure worked well to k 5 0.035.r 164.5 180.9 181.3

We also plotted the relation between curvature k of
deformed superquadrics and the ratios of the strength mea-
sures of symmetry (SMS) of the planer fit to the quadratic

estimates which came from the same symmetric plane (the fit in Fig. 10. As described in the end of Section 3.1, the
third and the fourth peaks) could converge to the same ratio of SMS of the planar to the quadratic fit can be used
parameter values. Table 2 shows the strength measures of as a normalized measure for the judgement for selecting
symmetry for the detected three symmetries. Figure 6d the planar or the quadratic fit. We used 0.95 as an empiri-
shows the recovery result of an axial volumetric model cally determined threshold value in the following experi-
based on the two symmetric planes having the larger values ments. That is, the quadratic fit was selected if the ratio
of the strength measures of symmetry. An axial volumetric of SMS of the planar to the quadratic fit was less than 0.95.
model can be recovered by the method described in [13],
when the shape has two global symmetric surfaces which 4.3. Handset Image
intersect orthogonally, and can be approximated by a gen-

Figure 11 shows the results of the Handset image. Theeralized cone whose cross section shape is scaled differently
image size was 128 3 120 (pixels). In this experiment, wein the two orthogonal directions on the cross section plane
used data acquired from a range scanner using light-along an axis determined as the intersection line of the
striping [8]. We show the detected symmetries whosetwo symmetric surfaces. Figure 6e shows the smoothed
strength measures of symmetry (SMS) were more thanlocal surface symmetries. Several local symmetries were
half of the highest value among all the detected symme-extracted as well as global symmetries. Also, the locations
tries. Table 3 shows the strength measures of symmetry ofof local symmetries on the surface could be made explicit.
detected symmetries, and the results on the selection of

4.2. Deformed Superquadric Image planar or quadratic fit. Interestingly, the quadratic fit result
having the second highest SMS seems to track the deforma-In the second experiment, we used images of deformed
tion of this handset shape accurately. In this case, whensuperquadrics in order to evaluate the tolerance for the
the quadratic fit was selected, the strength measure ofcurvature of a symmetric surface in attempting to fit a
symmetry was significantly increased as shown in Table 3.quadratic surface from an initial fit of a plane. Figure 7
For the other symmetries, the planar fit was selected be-
cause these two measurements were almost the same. Fig-
ure 11e shows the smoothed local surface symmetries. TheTABLE 2
method could extract many of the local symmetries thatStrength Measure of Symmetries
this handset shape possesses.

Peak no. Strength measure of symmetry

4.4. Deformed Handset Image1 1.81
2 0.93 In this experiment, the input range image was a de-

3, 4 2.01
formed version of the axial representation obtained from
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FIG. 7. Results of deformed superquadric images. Input images (top) and detected symmetric surfaces (bottom). We show the results of symmetry
detection by images viewed from a different viewpoint so as to illustrate clearly the location of the detected symmetric surface. The lengths of three
principle axes of the superquadric were 12, 8, and 6, and the squareness parameter was 0.5. (a) k 5 0; (b) k 5 0.01; (c) k 5 0.02; (d) k 5 0.03;
(e) k 5 0.04; (f) k 5 0.05.

FIG. 8. Results of deformed superquadric image with k 5 0.05. (a) Initial estimate of symmetric planes by the Hough method. (b) Refined
estimate of symmetric planes by the IRLS method. (c) Final estimate of quadratic fitting.

FIG. 10. Relation between curvature k of deformed superquadric
and the ratio of the strength measure of symmetry (SMS) of planar toFIG. 9. Relation between curvature k of deformed superquadric and

a2
20 1 a2

11 1 a2
02 . quadratic fit.
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FIG. 11. Results of Handset image. We show the results of symmetry detection by an image from a different viewpoint for each symmetry so
as to illustrate clearly the location of the detected symmetry. (a) Shaded display of input range image. (b) Detected planar symmetry with the
highest SMS. (c) Detected planar (left) and curved (right) symmetries with the second highest SMS. (d) Detected planar symmetry with the third
highest SMS. (e) Smoothed local surface symmetries.

the range image of Fig. 11a using the method described in results of the Face sculpture image. The detected symmetry
having the highest value of SMS captured the symmetry[13]. The input image was generated by giving a bend to

the extracted axis of the axial volumetric model. In Fig. of this Face sculpture. In this case, we only show one
detected symmetry (Fig. 13b) because the values of SMS12, we show detected symmetries whose SMS was more

than half of the highest SMS. The quadratic fit result with of other symmetries were much smaller than the highest
one (less than one-third). Figure 13c shows the smoothedthe highest SMS shown in Fig. 12b seems track the defor-

mation of this shape. Figure 12d shows the smoothed local local surface symmetries of the Face sculpture image. Be-
cause the upper part of this Face sculpture has a roughlysurface symmetries.
rotational symmetric shape, some detected local symme-

4.5. Face Image tries do not agree with our intuition.

In the following two experiments, we used data acquired
4.6. Detergent Bottle Image

from a panoramic range scanner [14]. Given the panoramic
data and viewpoint, an input range image was generated. Figure 14 shows the results with a Detergent Bottle,

which has two global symmetries. We show detected sym-The image size was 128 3 128 (pixels). Figure 13 shows the

TABLE 3
Results of the Selection of Planar or Quadratic Fit Using the Strength Measure of Symmetry

Strength measure
of symmetry

Ratio Planar or
Object Symmetry Planar Quadratic (planar/quadratic) quadratic

Handset Fig. 11b 2.04 2.05 1.00 Planar
Fig. 11c 1.70 1.91 0.88 Quadratic
Fig. 11d 1.31 1.31 1.00 Planar

Deformed Handset Fig. 12b 1.06 1.21 0.88 Quadratic
Fig. 12c 0.82 0.82 1.00 Planar

Face Fig. 13b 2.93 2.99 0.98 Planar
Detergent Bottle Fig. 14b 6.48 6.65 0.97 Planar

Fig. 14c 4.14 4.15 1.00 Planar
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FIG. 12. Results of Deformed Handset image. We show the results of symmetry detection by an image from a different viewpoint for each
symmetry so as to illustrate clearly the location of the detected symmetry. (a) Shaded display of input range image. (b) Detected planar (left) and
curved (right) symmetries with the highest SMS. (c) Detected planar symmetry with the second highest SMS. (d) Smoothed local surface symmetries.

metries whose SMS was more than half of the highest SMS. of occluding contour and surface points. The symmetry
parameters are accurately reestimated by the subsequentThe method could detect two global symmetric planes that
refinement process using the iteratively reweighted leastthis object possesses. Figure 14d shows a recovery result
square method. We have shown that the refinement pro-of an axial volumetric model whose axis is the intersection
cess is useful for nonmaximum suppression as well as forline of the two symmetric planes.
accurate parameter estimation. We have also demon-
strated two extensions of the method for extracting curved5. CONCLUSION
symmetries. The first involves the use of a quadratic instead

We have described methods for detecting global and of a planer fit. The second method for extracting curved
local symmetries on surfaces from a range image. The symmetries employs smoothed local surface symmetries,

which can be regarded as a 3D extension of smoothed localinitial estimates of the symmetric plane parameters are
obtained using the Hough transform based on point pairs symmetries [2] for 2D contours. It has been shown that

FIG. 13. Results of Face sculpture image. (a) Shaded display of input range image. (b) Detected planar symmetry with the highest SMS. We
show the result of symmetry detection by an image from a different viewpoint so as to illustrate clearly the location of the detected symmetry.
(c) Smoothed local surface symmetries.
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FIG. 14. Results of Detergent Bottle image. We show the results of symmetry detection by images from a different viewpoint for each symmetry
(right), as well as the viewpoint from which the input was taken (left), so as to illustrate clearly the location of the detected symmetries. (a) Shaded
display of input range image. (b) Detected planar symmetry with the highest SMS. (c) Detected planar symmetry with the second highest SMS.
(d) Recovered axial volumetric model. Oblique view (left) and side views (middle and right) from the directions corresponding to the normals of
two symmetric planes which determine the axis, which is set to the diagonal direction in images. (e) Smoothed local surface symmetries.

local symmetries can only be generated by extrema of with these methods is caused by the simultaneous pro-
cessing of shape recovery and determination of the coordi-curvature along a line of curvature [15]. Although curva-

ture extrema having high absolute curvature values can be nate system in which the recovered shape is described. If
the coordinate system is determined beforehand, however,localized using curvature estimates from local window

data, the localization is unstable for curvature extrema the shape recovery problem becomes much easier. Sym-
metries can be important cues for the determination ofhaving low absolute values using curvature estimates. The

method proposed here is suitable for extracting local sym- the coordinate system. We believe that symmetries ex-
tracted by the methods proposed here can be used for themetries generated by curvature extrema having low abso-

lute values. While extrema having high absolute curvature stable recovery of volumetric descriptions such as general-
ized cone representation [13].can be considered as the boundaries of segmented surface

patches, those having low absolute curvature can be consid-
ered as the descriptors of segmented surface patches. The ACKNOWLEDGMENTS
experimental results on extracting the smoothed local sur-
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