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SUMMARY Accurate thickness measurement of sheet-like structure
such as articular cartilage in CT images is required in clinical diagnosis
as well as in fundamental research. Using a conventional measurement
method based on the zero-crossing edge detection (zero-crossings method),
several studies have already analyzed the accuracy limitation on thickness
measurement of the single sheet structure that is not influenced by periph-
eral structures. However, no studies, as of yet, have assessed measurement
accuracy of two adjacent sheet structures such as femoral and acetabular
cartilages in the hip joint. In this paper, we present a model of the CT
scanning process of two parallel sheet structures separated by a small dis-
tance, and use the model to predict the shape of the gray-level profiles along
the sheet normal orientation. The difference between the predicted and the
actual gray-level profiles observed in the CT data is minimized by refin-
ing the model parameters. Both a one-by-one search (exhaustive combina-
tion search) technique and a nonlinear optimization technique based on the
Levenberg-Marquardt algorithm are used to minimize the difference. Using
CT images of phantoms, we present results showing that when applying the
one-by-one search method to obtain the initial values of the model param-
eters, Levenberg-Marquardt method is more accurate than zero-crossings
and one-by-one search methods for estimating the thickness of two adja-
cent sheet structures, as well as the thickness of a single sheet structure.
key words: cartilage thickness, hip joint, image quantification, numerical
simulation, point spread function

1. Introduction

Accurate thickness measurement of sheet-like structure such
as articular cartilage has become increasingly important in
clinical applications as well as in fundamental research.
A number of studies for measuring articular cartilage thick-
ness have been performed. Most of them have reported on
the knee joint cartilage [1]–[5], only a few of them investi-
gate the hip joint cartilage [6], [7].

Although several studies [8], [9] have already analyzed
the accuracy limitation on thickness measurement of sheet
structures by using the conventional techniques based on the
zero-crossing edge detection (zero-crossings method), these
results are valid under the restriction that the sheet struc-
ture is not influenced by its peripheral structures. In such
cases, we call this sheet structure “single sheet structure”.
The sheet structures in the actual medical images often vio-
late the restriction. For example, the femoral cartilage of the
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hip joint is close to the acetabular cartilage. In this case, two
cartilages (two sheet structures) may influence each other.
To our knowledge, no studies, as of yet, have assessed this
influence.

In this paper, we present a model of the CT scanning
process of two adjacent sheet structures separated by a small
distance for measuring the thickness of sheet structures. Us-
ing this model, we can predict the shape of the gray-level
profile along the normal orientation of the sheet surface.
We demonstrate that the zero-crossings method can intro-
duce large measurement errors in thickness measurement.
In our proposed approach, the estimation problem is formu-
lated as a least square fitting of an actual gray-level profile
observed in the CT data set to a predicted gray-level pro-
file. The difference between the predicted and the actual
gray-level profiles observed in the CT data is minimized by
refining the model parameters. Both a one-by-one search
(exhaustive combination search) technique and a nonlinear
optimization technique based on the Levenberg-Marquardt
algorithm are used to minimize the difference between pre-
dicted and actual gray-level profiles. The set of parameters
that minimizes the difference between the model and the ac-
tual image yields the thickness estimation of the sheet struc-
ture. Using CT images of phantoms, we compare the perfor-
mance of three methods (zero-crossings, one-by-one search,
and Levenberg-Marquardt).

2. Methods and Materials

2.1 Modeling Two Adjacent Sheet Structures

Assuming that Sheet1 and Sheet2 represent the three-
dimensional (3D) two adjacent and parallel sheet structures,
which model the both cartilages in the hip joint. Let us con-
sider the sheet structure is oriented obliquely to the scan
plane of CT imaging at an angle θ (Fig. 1). The 3D two
sheet structures perpendicular to the x axis, can be modeled
as

s0(�x ; τ1, τ0, τ2) = g(x; τ1, τ0, τ2), (1)

where �x = (x, y, z)T , and

g(x; τ1, τ0, τ2) =



Hb, x < −τ1 − τ0/2
Ht, −τ1 − τ0/2 ≤ x ≤ −τ0/2
H0, −τ0/2 < x < τ0/2
Ht, τ0/2 ≤ x ≤ τ0/2 + τ2

Hb, x > τ0/2 + τ2

(2)
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Fig. 1 Ideal model of two adjacent sheet structures separated by a small
distance, which models the two cartilages in the hip joint. Let Sheet1 and
Sheet2 represent the left and right side structures. The sheet structure is
oriented obliquely to the scan plane at an angle θ.

Fig. 2 1D profile of ideal density distributions along the normal orien-
tation of sheet surface for two adjacent sheets. τ1, τ2, and τ0 are Sheet1

thickness, Sheet2 thickness, and distance between them, respectively. Hb,
Ht , and H0 denote the ideal density heights of the background of both sides,
the two adjacent sheets, and the space between them, respectively.

in which τ1, τ2, and τ0 represent Sheet1 thickness, Sheet2

thickness, and distance between them, respectively. Hb, Ht,
and H0 denote the ideal density heights of the background of
both sides, the two adjacent sheets, and the space between
them, respectively (Fig. 2). Two adjacent sheets with rota-
tion θ around the y axis can be written as

s(�x ; τ1, τ0, τ2, θ) = s0(�x ′; τ1, τ0, τ2), (3)

where �x ′ = Rθ�x, in which Rθ denotes 3×3 matrix represent-
ing rotation θ around the y axis.

2.2 Modeling CT Imaging

If the imaging system is linear, the image of an object can
be expressed as the linear convolution of an object with the
PSF (point spread function) of the imaging system. For the
CT scanner, the scanning process can be modeled as a linear
convolution of the object with the PSF of the CT system [9],
[10]. The CT scanner PSF represents the resolution-limiting
factors that cause images not to be replicas of the real ob-
jects. An ideal PSF is an impulse, and any deviation from
this ideal function cause the PSF to widen. The increase in
PSF width increase the blur that images incur as a result of
being generated by this nonideal system. The spatial reso-
lution of CT scanner system can be characterized by its 3D
PSF. The 3D PSF is modeled as a Gaussian function [10],
[11], Gauss(�x ;σx, σy, σz), which is given by

psf (�x ) = Gauss(�x ;σx, σy, σz)

=
1

2π
3
2σxσyσz

e
−
(

x2

2σ2
x
+

y2

2σ2
y
+ z2

2σ2
z

)
, (4)

where psf (�x ) is the 3D PSF of the scanner, and σx, σy, and
σz are the standard deviations in the x, y, and z directions,
respectively. We assume that the parameters σx, σy, and σz

are estimated beforehand by a calibration procedure. The
estimation procedures for the PSF of the scanner are de-
scribed later in Sect. 2.5.

The scanning process is modeled as the 3D linear con-
volution of the 3D two adjacent sheets with the 3D ideal
scanner model [9], [10] and written as

f (�x ; τ1, τ0, τ2) = s(�x ; τ1, τ0, τ2, θ) ∗ psf (�x ), (5)

where s(�x ; τ1, τ0, τ2, θ) is the 3D ideal two adjacent struc-
tures with rotation θ, ∗ denotes the convolution operation,
psf (�x ) is the 3D PSF of the scanner, and f (�x ; τ1, τ0, τ2)
is the resultant 3D blurred image. The 1D profiles of
f (�x ; τ1, τ0, τ2) along the straight line are given by

�x = s · �rθ, (6)

where s is a parameter representing the position on the sheet
normal direction �rθ = (− sin θ, 0, cos θ). Thus, by substitut-
ing Eq. (6) for �x in f (�x ; τ1, τ0, τ2), the simulated gray-level
(scanner responses) along the line can be written as

f (s; τ1, τ0, τ2) = f (s · �rθ; τ1, τ0, τ2,�rθ). (7)

Figure 3 shows the density profiles of ideal model and
simulated scanner responses along �rθ for two adjacent
sheets (Fig. 3 (a)) and a single sheet (Fig. 3 (b)). Compar-
ing Fig. 3 (a) with Fig. 3 (b), it can be seen that the scanner
responses of Sheet2 were influenced by Sheet1.

2.3 Numerical Simulation Analysis of Zero-Crossings
Method

To illustrate the potential measurement errors when apply-
ing the zero-crossings method for two adjacent sheets, we
measure the thickness of Sheet2 using the zero-crossings
method. Measured thickness is defined as the shortest dis-
tance between the left and right sides of the edges of sheet
structure, which are the zero-crossings of second directional
derivatives combined with Gaussian blurring along the nor-
mal orientation of the sheet surface. In actual situations,
Gaussian blurring is employed to reduce the effect of noise.

When the Gaussian filter is applied to the acquired 3D
data by post-processing, the Gaussian filtered 3D data of the
sheet structure is given by

f (�x ; τ1, τ0, τ2, σ f ) = f (�x ; τ1, τ0, τ2) ∗ Gauss(�x ;σ f ),

(8)

where σ f is the filter width. Thickness measurement
of sheet structures can be performed only through an-
alyzing 1D profiles of the second directional derivative
f ′′(�x ; τ1, τ0, τ2, σ f ,�rθ) and the first directional derivative
f ′(�x ; τ1, τ0, τ2, σ f ,�rθ) of 3D data f (�x ; τ1, τ0, τ2, σ f ) along
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(a)

(b)

Fig. 3 Simulated scanner responses along the sheet normal direction.
The sheet structure is oriented obliquely to the scan plane at an an-
gle θ = 30◦, and the scanner PSF parameters are σx = σy = σxy = 0.45
and σz = 0.55, respectively. (a) Two adjacent sheets with τ1 = 1.5 mm,
τ0 = 0.5 mm, and τ2 = τ = 3.0 mm. (b) Single sheet with a thickness
of τ = 3.0 mm. Note that despite of τ2 = τ = 3.0 mm, gray-level profile
of Sheet2 is different from that of single sheet because Sheet1 and Sheet2

influence each other.

the sheet normal direction �rθ, where �rθ = (− sin θ, 0, cos θ)
(see [8] for the procedures of obtaining f ′′(�x ;τ1, τ0, τ2,σ f ,�rθ)
and f ′(�x ; τ1, τ0, τ2, σ f ,�rθ)). By substituting Eq. (6) for �x
in f ′′(�x ; τ1, τ0, τ2, σ f ,�rθ), the second directional derivative
along the line can be written as

f ′′(s) = f ′′(s · �rθ; τ1, τ0, τ2, σ f ,�rθ). (9)

Similarly, the first directional derivative along the line can
be written as

f ′(s) = f ′(s · �r ; τ1, τ0, τ2, σ f ,�rθ). (10)

Figure 4 (a) illustrates how thickness of Sheet2 is de-
termined by using a zero-crossings method along the sheet
normal orientation. We get zero-crossing points s = q and
s = p on the left and right sides of the edges for Sheet2,
which satisfy f ′′(s) = 0. Let zero-crossing points q and p

(a)

(b)

Fig. 4 Measured thickness of the sheet structures by using zero-
crossings method. The tilt angle θ = 30◦; the in-plane scanner PSF:
σx = σy = σxy = 0.45 and the scanner PSF in the z direction: σz = 0.55;
Gaussian filter width σ f = 0.25 mm for zero-crossings method. τ1 =
1.5 mm, τ0 = 0.5 mm, τ2 = τ = 3.0 mm. (a) Two adjacent sheets. Mea-
sured thickness of Sheet2: T2 = |p − q|. In the case of τ0 = 0.5 mm, thick-
ness of τ2 = 3.0 mm was measured by approximately 2.63 mm (−12.3%
error). (b) Single sheet. Measured thickness: T = |p − q|. Thickness of
τ = 3.0 mm was measured by approximately 3.03 mm (1% error). Com-
pared with a single sheet, thickness of Sheet2 was underestimated.

correspond to the minimum and maximum values of f ′(s)
among those satisfying the condition given by f ′′(s) = 0.
The measured thickness, T2, of Sheet2 is defined as the dis-
tance between p and q, as follows

T2 = |p − q|. (11)

In Fig. 4 (a), with τ1 = 1.5 mm, τ0 = 0.5 mm, τ2 = 3.0 mm,
and σ f = 0.25 mm, the true thickness τ2 = 3.0 mm is mea-
sured to be approximately 2.63 mm (−12.3% error). Fig-
ure 4 (b) shows the measured thickness of a single sheet.
In Fig. 4 (b), the true thickness τ = 3.0 mm is measured to
be approximately 3.03 mm (1% error). Comparing Fig. 4 (a)
with Fig. 4 (b), it can be seen that measured thickness of
Sheet2 is underestimated as comparison with that of a sin-
gle sheet.
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(a) (b) (c)

(d)

(e)

Fig. 5 CT imaging of acrylic plate phantoms at an angle θ = 60◦. The horizontal and vertical axes
of the images correspond to the x axis and z axis, respectively. (a) CT imaging of phantom of single
acrylic plate. The phantom consists of four single acrylic plates. Their thicknesses are shown in (a).
(b) CT imaging of phantom of two adjacent acrylic plates with τ0 (distance between Sheet1 and Sheet2)
= 0.5 mm. Each phantom consists of four pairs of acrylic plates. Sheet1 and Sheet2 are placed parallel
to each other, and their thicknesse are shown in (b). Phantom parameters with τ0 = 0.5 mm are given in
Table 1 (a). (c) CT imaging of phantom of two adjacent acrylic plates with τ0 = 1.0 mm. Phantom pa-
rameters with τ0 = 1.0 mm are given in Table 1 (b). (d) CT imaging of phantom of two adjacent acrylic
plates with τ0 = 1.5 mm. Phantom parameters with τ0 = 1.5 mm are given in Table 1 (c). (e) Volume
rendering image of phantom with τ0 = 0.5 mm. A high opacity value was assigned to low CT values
while zero opacity was assigned to high CT values.

2.4 Image Processing

2.4.1 Acrylic Plate Phantom

To test the proposed methods, four acrylic plate phantoms
of sheet-like objects with known thickness were scanned.
One was used for a single sheet; the other three were used
for two adjacent sheets. The single sheet phantom was used
to estimate the scanner PSF and to compare with the sheet
structure influenced by the adjacent sheet structure.

The CT images were acquired using the Toshiba
Aquilion CT scanner. Four phantoms were scanned with
a slice width of 0.5 mm, 120 kV, 300 mA, 1 s at the four
different tilt angles (θ = 0◦, 30◦, 60◦ and 90◦ relative to
the scan plane). The CT images were reconstructed with
a field of view of 128 mm (256 × 256 matrix, pixel size
= 0.5 mm). The phantom for the single sheet consisted
of four acrylic plates of 80 × 80 mm2 with thickness of
τ = 2.0, 1.0, 1.5, and 3.0 mm, placed parallel to each other
(Fig. 5 (a)). Each of the three phantoms for two adjacent
sheets consisted of four pairs of acrylic plates, placed par-
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Table 1 Phantom parameters for two adjacent sheets. Table shows
Sheet1 thickness (τ1), Sheet2 thickness (τ2), and distance between Sheet1

and Sheet2 (τ0).
(a) Distance between Sheet1 and Sheet2: τ0 = 0.5 mm.

(b) Distance between Sheet1 and Sheet2: τ0 = 1.0 mm.

(c) Distance between Sheet1 and Sheet2: τ0 = 1.5 mm.

allel to each other (Fig. 5 (b)–(d)). One of their volume
rendering images is shown in Fig. 5 (e). The parameters
(τ1, τ0, and τ2) of three phantoms are given in Table 1 (a) for
τ0 = 0.5 mm, Table 1 (b) for τ0 = 1.0 mm, and Table 1 (c)
for τ0 = 1.5 mm.

The phantoms were put in a contrast agent bath so that
the background (contrast agent) showed higher intensity as
contrasted to low intensity objects (acrylic plates) (Fig. 5).
In order to match a predicted profile with an actual profile
observed in the CT images of phantom, we performed the
intensity transformation of CT images. Consequently, the
objects (acrylic plates) showed higher intensity as contrasted
to low intensity background (contrast agent).

2.4.2 Interpolation

In order to reduce the effects of discretization, the actual 3D
images of phantoms are interpolated using sinc interpolation
in the x, y, z directions so that the voxel interval became half
of the original interval (0.5 mm). In this experiment, the
voxel interval of the volume data I(�x ) is ∆ = 0.25 mm.

2.4.3 Phantom Measurement Procedure Based on Zero-
Crossings Method

In the real CT images of acrylic plate phantom, thickness
measurement of Sheet2 mainly includes the following two
stages.

i) Extraction of Sheet2: In the actual images of phantoms,

it is necessary to extract the initial Sheet2 regions be-
fore thickness determination. Using an automated seg-
mentation technique [12], the approximated segmented
regions of Sheet2 are extracted.

ii) Thickness determination: For the extracted 3D Sheet2

regions, a procedure analogous to that described in [8]
is employed to find the zero-crossings p and q for
Sheet2. The thickness of Sheet2 is defined as the dis-
tance between p and q.

2.5 Parameter Estimation of CT Scanner PSF

We used CT images of the phantom with a single acrylic
plate (Fig. 5 (a)) to estimate the PSF of the scanner. Let σxy

(= σx = σy) be the x-y plane standard deviation. CT volume
data of a single acrylic plate with a tilt angle of θ = 90◦ is
used to estimate the x-y plane standard deviation σxy and CT
volume data with a tilt angle of θ = 0◦ is used to estimate the
standard deviation in the z direction (σz). A nonlinear opti-
mization technique is used to match the gray-level profile of
simulated scanner model with actual gray-level profile ob-
served in CT data I[�x ] along �rθ. The PSF estimation of the
scanner procedure involves the following two stages.

Estimation of σxy: Let the observed profile be sampled
at N discrete points in the actual image at a tilt angle of
θ = 90◦. Using the known thickness τ, σxy, Lt, and Lb are
estimated by finding the values of σxy, Lt, and Lb minimiz-
ing

E(σxy, Lt, Lb) =
N∑

i=1

{I(si) − f (si; τ, σxy, Lt, Lb)}2. (12)

where si is the ith sample along the sheet normal orientation
in the actual image. Lt and Lb are the gray-levels of sheet
structure and both sides of backgrounds for an ideal model
of a single sheet structure. An optimization technique based
on the Levenberg-Marquardt algorithm is used to solved this
non-linear least square problem. The σxy is obtained as the
average of all the results.

Estimation of σz: Let the observed profile be sampled
at N discrete points in the actual image at a tilt angle of
θ = 0◦. Using the known thickness τ, σz, Lt, and Lb are
estimated by finding the values of σz, Lt, and Lb minimizing

E(σz, Lt, Lb) =
N∑

i=1

{I(si) − f (si; τ, σz, Lt, Lb)}2. (13)

where si is the ith sample along the sheet normal orientation
in the actual image. An optimization technique based on
the Levenberg-Marquardt algorithm is used to solved this
non-linear least square problem. The σz is obtained as the
average of all the results.

2.6 Proposed Method of Thickness Determination Based
on the CT Imaging Model

As described in the previous section, zero-crossings method
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can yield large measurement errors for two adjacent sheet
structures. To correct the measurement errors, we propose
a new measurement method based on a model of the scan-
ning process. We model the scanning process of the ideal
two adjacent sheets and use the model to predict the shape
of gray-level profiles along the sheet normal direction given
in Eq. (7). The difference between the predicted profile and
the actual profile observed in the CT data is minimized by
refining the model parameters. The set of parameters that
minimizes the difference between model and the data yields
the thickness estimation of the sheet structure.

We assume that Ht, H0, and Hb are constant, while τ1,
τ0, and τ2 are variable at the different locations in the hip
joint. We use zero-crossings method for estimating τ1, τ0,
and τ2. Because Ht, H0, and Hb are constant in the entire
image, if we have found one location where measured val-
ues of τ1, τ0, and τ2 are regarded as a good approximation
of true values τ1, τ0, and τ2, Ht, H0, and Hb at this location
can be estimated accurately using this accurately measured
values of τ1, τ0, and τ2. In our case, when measured values
of τ1, τ0, and τ2 are 1.5 mm or above, these measured values
can be regarded as a good approximation of their true val-
ues (This will be confirmed later in Figs. 7 and 8 of Sect. 3).
If we might find several locations that satisfied the condi-
tion mentioned above, all Ht, H0, and Hb estimated at these
locations are averaged, respectively, and these average val-
ues are regarded as the estimated values of Ht, H0, and Hb.
Furthermore, τ1, τ0, and τ2 at all locations are estimated ac-
curately using Ht, H0, and Hb obtained above, since Ht, H0,
and Hb are constant in the entire image. Briefly, the esti-
mation procedure involves the following two steps: 1) the
intensity heights of Ht, H0, and Hb are estimated with the
accurately measured values of τ1, τ0, and τ2; and 2) τ1, τ0,
and τ2 are estimated using Ht, H0, and Hb estimated in the
first step.

2.6.1 Estimation of Ht, H0, and Hb

To estimate the density values of Ht, H0, and Hb, the gray-
level profile observed in the actual data needs to be fit to
the modeled profile. Using the model of the scanning pro-
cess, we can obtain the 1D profile of the predicted gray level
f (s; τ1, τ0, τ2) (given in Eq. (7)) from f (�x ; τ1, τ0, τ2) along
the sheet normal direction�rθ. Similarly, 1D profile of the ac-
tual gray level I(s) is derived from CT image I(�x ) along �rθ.
The reconstruction of 1D profile I(s) is performed at the sub-
voxel resolution by using a trilinear interpolation.

Let T1, T0, and T2 denote measured values of true
values τ1, τ0, and τ2, respectively, as estimated by zero-
crossings method. In our case, for T1 ≥ 1.5 mm, T0 ≥
1.5 mm, and T2 ≥ 1.5 mm, these measured values are re-
garded as a good approximation of τ1, τ0, and τ2. Let the
observed profile be sampled at N discrete points in the ac-
tual image. With T1, T0, and T2 satisfied the condition
T1 ≥ 1.5 mm, T0 ≥ 1.5 mm, and T2 ≥ 1.5 mm, Ht, H0,
and Hb are estimated by finding the values of Ht, H0, and Hb

minimizing

E(Ht,H0,Hb)=
N∑

i=1

{I(si)− f (si;T1,T0,T2,Ht,H0,Hb)}2.

(14)

where si is the ith sample along the sheet normal orientation
in the actual image. An optimization technique based on the
Levenberg-Marquardt algorithm is used to solve this non-
linear least square problem. Initial estimations of model pa-
rameters are required to start the optimization process. The
initial values for Ht, H0, and Hb are determined from the
gray-level of CT image. We assume that Ht, H0, and Hb

are not locally variable and thus those are obtained as aver-
ages of all the results from the sequences of the gray level
profiles.

2.6.2 Estimation of τ1, τ0, and τ2

Using estimated Ht, H0, and Hb in the first step, τ1, τ0,
and τ2 are searched minimizing

E(τ1, τ0, τ2) =
N∑

i=1

{I(si) − f (si; τ1, τ0, τ2,Ht,H0,Hb)}2.

(15)

In this step, we use two optimization methods to mini-
mize Eq. (15).

i) We use the one-by-one search (exhaustive combination
search) method to minimize Eq. (15). The τ1 and τ0 are
discretized from 0.2 to 12 voxels with 0.2 voxel fixed
interval (voxel interval = 0.25 mm), respectively, and
τ2 is discretized from 0.2 to 24 voxels with 0.2 voxel
fixed interval. For all the combinations of discretized
model parameters τ1, τ0, and τ2, using the estimated
Ht, H0, and Hb in the first step, the cost function
E(τ1, τ0, τ2) given in Eq. (15) is calculated. Among
all the combinations of the model parameters τ1, τ0,
and τ2, one combination of discretized model param-
eters τ1, τ0, and τ2 corresponding to minimum value
of cost function E(τ1, τ0, τ2) is regarded as the estima-
tions of τ1, τ0, and τ2. These estimations will be used
as the initial estimations in the following optimization
process.

ii) We employ a nonlinear technique based on Levenberg-
Marquardt algorithm to minimize Eq. (15). After itera-
tive minimization, the model parameters τ1, τ0, and τ2

yield the thickness estimations of sheet structures. Ini-
tial estimations of model parameters are required to
start the optimization process. Levenberg-Marquardt
algorithm can yield the considerable estimation biases
when applying the zero-crossings method to obtain the
initial values of τ1, τ0, and τ2. Thus, the one-by-one
search method is used to obtain the initial estimations
of τ1, τ0, and τ2.

3. Results

Figure 6 shows the actual gray-level profile and the model-
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(a)

(b)

Fig. 6 Actual gray-level profile and modeled gray-level profile along the
sheet normal direction after nonlinear optimization technique base on the
Levenberg-Marquardt algorithm for estimating the scanner PSF. (a) Esti-
mating the in-plane scanner PSF σxy. Using the phantom of single sheet
with a thickness of τ = 3.0 mm at an angle θ = 90◦, the in-plane scanner
PSF σxy was estimated to be approximately 0.453 mm. (b) Estimating the
scanner PSF σz in the z direction. Using the phantom of single sheet with
a thickness of τ = 3.0 mm at an angle θ = 0◦, the scanner PSF σz was
estimated to be approximately 0.596 mm. In this experiment, the in-plane
scanner PSF (σxy) was estimated to be approximately 0.45 ± 0.06 mm, and
the scanner PSF in the z direction (σz) was estimated to be approximately
0.60 ± 0.08 mm. Graphs show the average and the SD of the estimated
scanner PSF with 50 rays (along the sheet normal direction) used to form
the measurement (N = 50).

predicted profile along the sheet normal after the nonlinear
optimization technique based on the Levenberg-Marquardt
algorithm for estimating the scanner PSF. Figure 6 (a)
shows the actual gray-level and the model-predicted pro-
files when the sheet structure is oriented obliquely to the
scan plane at an angle of θ = 90◦. The in-plane scan-
ner PSF (σxy) was estimated to be approximately 0.45 ±
0.06 mm. Figure 6 (b) shows the actual gray-level and the
model-predicted profiles when the sheet structure is oriented
obliquely to the scan plane at an angle of θ = 0◦. The scan-
ner PSF in the z direction (σz) was estimated to be approxi-
mately 0.60 ± 0.08 mm.

In Fig. 7, we compared the measured thickness of sin-
gle sheet with that of Sheet2 which is influenced by Sheet1

by using zero-crossings method. Figure 7 shows the aver-
ages of the actually measured thickness obtained from CT
imaging of acrylic phantom and the plots of the simulated

(a)

(b)

(c)

Fig. 7 Comparing the measured thickness of single sheet and Sheet2 by
using zero-crossings method. The scanner PSF: σxy = 0.45 and σz = 0.60;
Gaussian filter width: σ f = 0.25. The sheet structure is oriented obliquely
to the scan plane at an angle θ = 90◦. The biases between the simulated
thickness and average of actually measured thickness were predominantly
around 0.1 mm or less, and SDs (standard derivative) of actually measured
thickness were mostly around 0.1 mm (not shown). Graphs show the av-
erage and the SD of actually measured thickness with 50 rays (along the
sheet normal direction) used to form the measurement (Sample number:
N = 50). (a) τ0 = 0.5 mm. (b) τ0 = 1.0 mm. (c) τ0 = 1.5 mm.
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Fig. 8 Relationships between the true interval τ0 and the measured in-
terval T0. Sheet1 thickness: τ1 = 1.5 mm; Sheet2 thickness: τ2 = 1.0 mm.
The scanner PSF: σxy = 0.45 and σz = 0.60; Gaussian filter width:
σ f = 0.25. Tilt angle: θ = 90◦ . Interval value between two sheets was
measured by zero-crossings method. Graph shows for T0 ≥ 1.5 mm, these
values approached to their true interval τ0.

thickness when the sheet structure is oriented obliquely to
the scan plane at an angle of θ = 90◦ for single sheet and
Sheet2. A good agreement between the simulated and the
actually measured thickness was observed in Fig. 7. For
a single sheet structure, thickness of thicker-structures was
measured accurately: for instance, measurement of τ =
2.0 mm yielded a result of 2.02 mm (0.02 mm or 1% over-
estimation); whereas thickness of thinner-structures was
overestimated: for instance, measurement of τ = 1.0 mm
yielded a result of 1.25 mm (0.25 mm or 25% overestima-
tion). For two adjacent sheet structures, in the case of
τ0 = 0.5 mm (Fig. 7 (a)), compared with the measured thick-
ness of single sheet, thickness of Sheet2 was underesti-
mated by approximately 0.3–0.35 mm. Also, compared with
its true thickness, measured thickness was underestimated
for thicker-structure: for instance, τ2 = 2.0 mm and 3.0 mm
were measured by 1.70 mm (0.30 mm or 15% underestima-
tion) and 2.69 mm (0.31 mm or 10.3% underestimation), re-
spectively; whereas measured thickness was overestimated
for thinner-structure: for instance, τ2 = 0.5 mm was mea-
sured by 0.7 mm (0.20 mm or 40% overestimation), respec-
tively. In the case of τ0 = 1.0 mm. (Fig. 7 (b)), mea-
sured thickness of Sheet2 was also less than that of single
sheet. Also, compared with its true thickness, its thickness
was slightly underestimated for thicker-structure, whereas
its thickness was overestimated for thinner-structure. In
the case of τ0 = 1.5 mm (Fig. 7 (c)), measured thickness of
Sheet2 was approximately equivalent to that of single sheet.
For the true thickness τ2 ≥ 1.5 mm, its thickness can be ac-
curately measured: for instance, thickness of τ2 = 1.5 was
measured by 1.55 mm (0.05 mm or 3.33% error). In ad-
dition, we performed the above measurements for θ = 0◦,
θ = 30◦, and θ = 60◦, respectively. These results were the
same trend as exhibited by results at θ = 90◦.

In Fig. 8, with τ1 = 1.5 mm and τ2 = 1.0 mm, interval

Fig. 9 Actual gray-level profile and modeled gray-level profile along the
sheet normal direction after nonlinear optimization technique base on the
Levenberg-Marquardt algorithm for estimating the thickness of Sheet2. The
scanner PSF: σxy = 0.45 and σz = 0.60. The actual image of acrylic
plate phantom at θ = 60◦ was used, and actual phantom parameters (Sheet1
thickness: τ1 = 1.5 mm, Sheet2 thickness: τ2 = 3.0 mm, distance between
them: τ0 = 0.5 mm) are given in Table 1 (a). For the Levenberg-Marquardt
algorithm, initial estimations of the model parameters are required to start
the optimization process. One-by-one search method is used to obtain the
initial estimations of τ1, τ0, and τ2. Zero-crossing method: τ2 = 3.0 mm
was estimated to be approximately 2.67 mm (−11% error); One-by-one
search method: τ2 = 3.0 mm was estimated to be approximately 3.11 mm
(3.67% error); Levenberg-Marquardt method: τ2 = 3.0 mm was estimated
to be approximately 3.05 mm (1.67% error).

between two sheets was measured by using zero-crossings
method. A good agreement between the simulated and the
actually measured intervals was shown in Fig. 8. The re-
sults of Fig. 8 show that for the true interval τ0 ≥1.5 mm,
measured interval value T0 is approximately equivalent to
the true interval τ0. From the results of Figs. 7 and 8, it
can be seen that when using zero-crossings method, in our
case, for T2 (measured value of τ2) ≥ 1.5 mm and T0 ≥
1.5 mm, these measured values approached to their true val-
ues. Similarly, with τ1 = 1.5 mm and τ2 = 1.5, 2.0, and
3.0 mm, respectively, comparisons between τ0 and T0 were
performed, respectively. The same results as Fig. 8 were
observed. Also, for T1 (measured value of τ1) ≥ 1.5 mm,
these measure values should be accurate.

Figure 9 shows the actual gray-level profile and the
modeled gray-level profile along the sheet normal direc-
tion after the nonlinear optimization technique based on the
Levenberg-Marquardt algorithm for estimating the thick-
ness of Sheet2 at a tilt angle of θ = 60◦. The phan-
tom with τ1 = 1.5 mm, τ0 = 0.5 mm, and τ2 = 3.0 mm
was used. The zero-crossings method yielded a result of
2.67 mm (−11% error) for τ2 = 3.0 mm. One-by-one search
method yielded the results of 1.62 mm for τ1 = 1.5 mm,
0.67 mm for τ0 = 0.5 mm, and 3.11 mm (3.67% error) for
τ2 = 3.0 mm. Using the initial values of τ1 = 1.62 mm, τ0 =

0.67 mm, and τ2 = 3.11 mm estimated by one-by-one search
method, Levenberg-Marquardt method yielded the results of
1.56 mm for τ1 = 1.5 mm, 0.58 mm for τ0 = 0.5 mm, and
3.05 mm (1.67% error) for τ2 = 3.0 mm. Thus, Levenberg-
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(a) (b)

(c) (d)

Fig. 10 Comparing the performance of three methods (zero-crossing, one-by-one search, and
Levenberg-Marquardt) for estimating the thickness of Sheet2. Graphs show the average measurement
error and the SD of the measurement error with 50 rays (along the sheet normal direction) used to form
the measurement (Sample number: N = 50). The measurement error is defined as E = T2 − τ2. (a) The
tilt angle θ = 0◦; Distance between Sheet1 and Sheet2: τ0 = 0.5 mm. (b) θ = 60◦; τ0 = 0.5 mm.
(c) θ = 0◦; τ0 = 1.5 mm. (d) θ = 60◦; τ0 = 1.5 mm. For (a) and (b), phantom parameters are given in
Table 1 (a); for (c) and (d), phantom parameters are given in Table 1 (c). In the figures, sheets 1, 2, 3,
and 4 correspond to 1.0, 1.5, 2.0, and 3.0 mm, respectively, with respect to the thickness of Sheet2.

Marquardt method was more accurate for this case.
Figure 10 shows the average measurement error and

the SDs of the measurement error for the zero-crossings,
one-by-one search, and Levenberg-Marquardt methods.
As shown in Figs. 10 (a) and (b), in the case of τ0 =

0.5 mm, the measured thickness of Sheet2 was influenced
by Sheet1 when using zero-crossings method. The ini-
tial values of τ1, τ0, and τ2 was estimated by one-by-
one search method for using Levenberg-Marquardt method.
Levenberg-Marquardt method gave measurements with less
estimation bias than zero-crossings and one-by-one search
methods. As Figs. 10 (c) and (d) illustrated, in the case of
τ0 = 1.5 mm, the measured thickness of Sheet2 was not
influenced by Sheet1 when using zero-crossings method.
Comparing the performance of three methods, Levenberg-
Marquardt method was more accurate than the others.

4. Discussion

The theoretical simulation and phantom measurements
show that when two sheet structures are close to each other,
a conventional measurement technique, zero-crossings
method, yields considerable measurement biases (Fig. 7).
This is caused by the finite resolution of imaging scan-
ners [14] and blurring involved in edge detector.

Note that the influence between Sheet1 and Sheet2 was
dependent on the distance τ0 between Sheet1 and Sheet2. As
the distance τ0 decreases, the error in measuring the thick-
ness of sheet structures increases. When the distance τ0

reaches to a certain value, two sheet structures can no longer
influence each other. This value can be predicted by us-
ing our simulation method. In our present work, when the
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distance τ0 was 1.5 mm, the measured thickness of Sheet2

was approximately equivalent to that of the single sheet
(Fig. 7 (c)). We may regard Sheet2 as a single sheet struc-
ture when the distance τ0 = 1.5 mm. It should be noted
that the value of τ0 at which the influence is negligible de-
pends on degrees of both the scanner PSF and the blur-
ring involved in edge detectors. The results of Fig. 7 (c)
show that when using the zero-crossings method, thickness
of thinner-structure is overestimated, whereas thickness of
thicker-structure is accurately measured. This is consistent
with our results of the previous study [8]–[10] for thickness
measurement of a single sheet structure.

From the experimental results of Figs. 7 and 8 it can
be deduced that when using zero-crossings method, for
T1 ≥ 1.5 mm, T2 ≥ 1.5 mm, and T0 ≥ 1.5 mm, these values
can be regarded as a good approximation of true values τ1,
τ2, and τ0. It should be noted that our proposed method
includes two steps described in Sect. 2.6. In the first step,
we use zero-crossings method for estimating τ1, τ2, and τ0.
We should find at least one location where measured values
of τ1, τ2, and τ0 are 1.5 mm or above. Furthermore, using
this accurately measured values of τ1, τ2, and τ0, Ht, H0,
and Hb at this location can be estimated accurately. In the
second step, τ1, τ2, and τ0 at all locations can be estimated
accurately with Ht, H0, and Hb obtained above, since Ht,
H0, and Hb are constant in the entire image. On the other
hand, in the first step, if we cannot find any location where
measured values of τ1, τ2, and τ0 are 1.5 mm or above when
applying zero-crossings method, Ht, H0, and Hb cannot be
estimated accurately. Then, in the second step, it is impos-
sible to accurately estimate parameters τ1, τ2, and τ0. For
this reason, we observed the real patient CT data sets. Con-
sequently, finding some locations where measured values
of τ1, τ2, and τ0 are 1.5 mm or above should be possible.

In this work, an optimization technique based on
Levenberg-Marquardt algorithm is used to minimize the dif-
ference between the predicted and the actual gray-level pro-
files observed in the CT data by refining the model param-
eters. One drawback for Levenberg-Marquardt algorithm is
the fact that the initial values of the model parameters are re-
quired to start the optimization process, and using the poor
initial values can give rise to large estimation biases. The
zero-crossings method exhibited considerable estimation bi-
ases for the single sheet structure with small thickness and
the two adjacent sheet structures (Fig. 7). An attempt was
made to obtain the initial values of τ1, τ0, and τ2 using zero-
crossings method. Levenberg-Marquardt algorithm yielded
the poor estimations of τ1, τ0, and τ2 when applying the
zero-crossings method to obtain the initial values. Thus,
one-by-one search method was used to find the initial val-
ues of τ1, τ0, and τ2. Levenberg-Marquardt algorithm gave
an accurate thickness measurement (Fig. 10).

In this study, the sheet plane angle was known. In the
real clinical application, however, it is necessary to estimate
the normal direction of the sheet structure. The estimation
of normal direction of cartilage surface has been presented
in [14] and [15]. In the healthy hip joint, the shape of the

femoral head approximates the exact sphere; therefore, the
radial directions from the automatically detected center of
the femoral head can be regarded as the normal direction of
the cartilage surface [14]. However, as in the case of dis-
eased hip joint, because the shape of the femoral head is not
perfectly spherical, the method presented in [14] cannot be
used. In such cases, the normal direction might be estimated
using the eigenvectors of the Hessian matrix [15]. Our previ-
ous study demonstrated the effectiveness for the estimation
of normal direction of sheet structure [14], [15].

In the hip joint, both the femoral head and the acetab-
ulum are covered with cartilage. The ball and socket con-
stitution of the hip joint, with strong capsule and ligaments,
does not permit discrimination of the articular cartilage of
the femoral head from the acetabulum. Both cartilages were
separately depicted using a traction device for distending the
joint space [16], and the contrast agents were used for en-
hancing the CT images. However, in many cases, the joint
space between the femoral cartilage and acetabular cartilage
is narrow despite traction. Therefore, it should be consid-
ered that two cartilages maybe influence each other on mea-
surement accuracy of articular cartilage thickness when ap-
plying the zero-crossing method.

5. Conclusion

We model the CT imaging processes of two parallel sheet
structures separated by a small distance and use this model
to predict the shape of the gray level profiles along the nor-
mal orientation of the sheet surface. Using this model, we
show that when applying zero-crossings method for measur-
ing thickness of two adjacent sheets, in the case of measured
interval T0 < 1.5 mm, zero-crossings method can introduce
considerable measurement biases. To correct the measure-
ment error, a new approach based on the model of scan-
ning process is presented to estimate the thickness of two
adjacent sheet structures. The proposed approach estimates
the thickness of sheet structures by matching a predicted
profile with an actual profile observed in the CT data set.
Both a one-by-one search (exhaustive combination search)
technique and a nonlinear optimization technique based on
the Levenberg-Marquardt technique are used to adjust the
model parameters and to estimate the thickness of sheet
structures. Experimental results show that when applying
the one-by-one search technique to obtain the initial values
of the model parameters, Levenberg-Marquardt algorithm
can accurately estimate the thickness of two adjacent sheet
structures, as well as the thickness of a single sheet struc-
ture. Therefore, using our proposed method, the accurate
measurement of articular cartilages in the hip joint should
be possible. Finally, our future work will focus on clinical
validation using the patient CT data sets for clinical applica-
tions.
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