

ListPlot3D[Abs[fgabor08120], PlotRange->All];

2次元Gabor関数画像の全方向加算のフーリエ変換サンプル
2次元Gabor関数画像の加算と表示
2次元波形画像入力、画像表示、3次元表示
cgabor08 = gabor08000 + gabor08015 + gabor08030 +
+ gabor08150 + gabor08165
ListDensityPlot[cgabor08, Mesh->False, PlotRange->All];
ListPlot3D[cgabor08, PlotRange->All];
全方向加算された2次元Gabor関数画像のフーリエ変換と表示
フーリエ変換、画像表示、3次元表示
fcgabor08 = Fourier[cgabor08];
ListDensityPlot[Abs[fcgabor08], Mesh->False,
PlotRange->All];
ListPlot3D[Abs[fcgabor08], PlotRange->All];

2次元Gabor関数画像の全方向加算のフーリエ変換サンプル
全方向2次元Gabor関数画像(周期8、pgm)の入力・加算・フーリエ変換
g = Import["///gabor_08_000.pgm"];
gabor08000 = g[[1,1]] - 100;
$g = Import["///gabor_08_015.pgm"];$
gabor08015 = g[[1,1]] - 100;
$g = Import["///gabor_08_030.pgm"];$
gabor08030 = g[[1,1]] - 100;
$g = Import["///gabor_08_150.pgm"];$
$g = \text{Import}["///gabor_08_165.pgm"];$
gabor08165 = g[[1,1]] - 100;
$cgabor08 = gabor08000 + gabor08015 + gabor08030 + \dots +$
gabor 08150 + gabor 08165
tcgabor08 = Fourier[cgabor08];
ListDensityPlot[Abs[fcgabor08], Mesh->False, PlotRange->All];
ListPlot3D[Abs[fcgabor08], PlotRange->All];

2次元Gabor関数画像の全方向加算のフーリエ変換サンプル

04,08,16,32の各幅(周期)の全方向Gabor 関数画像をダウンロードし、全方向加算した2 次元Gabor関数画像をつくる。

cgabor04.pgm cgabor08.pgm cgabor16.pgm cgabor32.pgm

<u>Mathematica 演習:特定幅の線の認識</u> 全方向加算2次元Gabor関数画像 cgabor08.pgm のフーリエ変換(の絶対値)との積をとり、逆フーリエ変換をする。 fcgabor08 = Fourier[cgabor08]; gfline = fline*Abs[fcgabor08]]/(8*8); gline = InverseFourier[gfline]; ListDensityPlot[Abs[gfline], Mesh->False,PlotRange->All]; ListDensityPlot[Abs[gline], Mesh->False, PlotRange->{40,50}];

<u>Mathematica 演習:特定幅の線の認識</u>

複数幅の線画像の入力・フーリエ変換・全方向加算Gaborフィルタリング

g = Import["/..../mgline_01_02_04_p1.pgm"]; line = g[[1,1]]; ここを変えてやってみる ListDensityPlot[line, Mesh->False,PlotRange->All]; fline = Fourier[line];

fcgabor08 = Fourier[cgabor08];
gfline = fline*Abs[fcgabor08]]/(8*8);
gline = InverseFourier[gfline];

ListDensityPlot[Abs[gline], Mesh->False, PlotRange->{40,50}];

<u>Mathematica 演習:特定方向の線の認識</u>
 単一方向線画像を入力して、出力画像を確認せよ。 – Gabor フィルタと同一方向の線画像の出力は? – 少し異なる方向の線画像の出力画像は? – 全く異なる方向の線画像の出力画像は?
<u>線画像入力、フーリエ変換、Gaborフィルタ適用</u> g = Import["d:///gline_02_120.pgm"]; line = g[[1,1]]; fline = Fourier[line]; igfline = InverseFourier[fline*Abs[fgabor08120]]/(8*8);
<u>表示(画像表示、3次元プロット表示)</u> ListDensityPlot[line, Mesh->False,PlotRange->All]; ListDensityPlot[Abs[igfline], Mesh->False,PlotRange->All];
gline_02_110 gline_02_100 gline_02_090 gline_02_080 など を試してみよ。

<u>Mathematic</u>	<u>a 演習</u>	:特定方	「向の線の認	識
モーメント行列の固有 固有値に対応する固定 る直線方向である。	マクトル 有ベクト.	を求める ル方向が	。モーメント行び 「最小モーメン	別の最小ト軸」とな
▲	w _i : 出ナ	コノルム値	查, x _i : x座標値,	y _i : y座標值
	i=1	a000	$\cos(0^{\circ})$	Sin(0)
	i=2	a015	$\cos(15^{\circ})$	$Sin(15^{\circ})$
	• i=3	a030	$\cos(30^{\circ})$	$Sin(30^\circ)$
	:	:	:	:
	i=11	a150	$\cos(150^{\circ})$	$Sin(150^{\circ})$
	i=12	a165	$\cos(165^{\circ})$	$Sin(165^{\circ})$
	i=13	a000	$\cos(180^{\circ})$	$Sin(180^{\circ})$
	i=14	a015	$\cos(195^\circ)$	$Sin(195^{\circ})$
	:	:	•	•
	i=23	a150	$\cos(330^{\circ})$	$Sin(330^{\circ})$
	i=24	a165	$\cos(345^{\circ})$	$Sin(345^{\circ})$

<u>Mathematica 演</u>	習:特定方向の線の認識
モーメント行列の固有ベクト 固有値に対応する固有べた	<mark>▶ルを求める。モーメント行列の最小</mark> ハトル方向が直線方向である。
モーメント行列 $\begin{pmatrix} M_{xx} & M_{x} \\ M_{xy} & M_{y} \end{pmatrix}$	$ \int_{y_{y}} M_{xx} = \sum_{i=1}^{n} w_{i} x_{i}^{2} M_{yy} = \sum_{i=1}^{n} w_{i} y_{i}^{2} $ $ M_{xy} = \sum_{i=1}^{n} w_{i} x_{i} y_{i}^{2} $
$mxx = N[a000*Cos[0^{\circ}] *Cos[0^{\circ}] + a165*Cos[165^{\circ}] *Cos[165^{\circ}] + a015*Cos[195^{\circ}] *Cos[195^{\circ}] + a015*Cos[195^{\circ}] + a0015*Cos[195^{\circ}] + a015*Cos[195^{\circ}] + a015*Cos[195^{\circ}]$	a^{2} + a015*Cos[15°] *Cos[15°] + + a000* Cos[180°] *Cos[180°] + + a165* Cos[345°] *Cos[345°]];
$w_i: \ddagger \\ i=1 \\ i=2 \\ i=3$	カノルム値, x_i : x座標値, y_i : y座標値 a000 $\cos(0^\circ)$ $\sin(0^\circ)$ a015 $\cos(15^\circ)$ $\sin(15^\circ)$ a030 $\cos(30^\circ)$ $\sin(30^\circ)$
i=24	$cos(345^{\circ})$ $Sin(345^{\circ})$

<u>Mathematica 演</u>	習:特定方	向の線の話	図識
モーメント行列の固有ベクト 固有値に対応する固有べク	<mark>・ルを求める</mark> フトル方向が	<mark>。モーメント</mark> 行 直線方向であ	列の最小 る。
モーメント行列 $\begin{pmatrix} M_{xx} & M_{xy} \\ M_{xy} & M_{yy} \end{pmatrix}$	$\int_{y} M_{xx} = \sum_{i=1}^{y} M_{y}$	$\sum_{i=1}^{n} w_i x_i^2 M_i$ $M_{xy} = \sum_{i=1}^{n} w_i$	$w_{y} = \sum_{i=1}^{n} w_{i} y_{i}^{2}$ $x_{i} y_{i}$
$mxy = N[a000*Cos[0^{\circ}] *Sin[0^{\circ}] + a165*Cos[165^{\circ}] *Sin[165^{\circ}] + a015*Cos[195^{\circ}] *Sin[195^{\circ}] + .$] + a015*Co - a000* Cos[+ a165	s[15°] *Sin[15 [180°] *Sin[18 * Cos[345°] *	$5^{\circ}] + \dots$ $50^{\circ}] + Sin[345^{\circ}]];$
w_i : 出 i=1 i=2 i=3	カノルム値, a000 a015 a030	x _i : x座標値, Cos(0°) Cos(15°) Cos(30°)	y _i : y座標値 Sin(0°) Sin(15°) Sin(30°)
i=24	a165	$\cos(345^{\circ})$	Sin(345°)

<u>Mathematica 演</u>	習:特定方向	同の線の認	識	
モーメント行列の固有ベクト 固有値に対応する固有べた	·ルを求める。 'トル方向が直	モーメント行 線方向であ	列の最小 る。	
モーメント行列 $\begin{pmatrix} M_{xx} & M_{x} \\ M_{xy} & M_{y} \end{pmatrix}$	$\int_{y} M_{xx} = \sum_{i=1}^{n} M_{xx}$	$w_i x_i^2 M_{yy}$ $U_{xy} = \sum_{i=1}^n w_i x_i^2$	$y_{i} = \sum_{i=1}^{n} w_{i} y_{i}^{2}$ $x_{i} y_{i}$	
$myy = N[a000*Sin[0^{\circ}] *Sin[0^{\circ}] + a015*Sin[15^{\circ}] *Sin[15^{\circ}] + \dots$				
$a015* Sin[195^{\circ}] *Sin[195^{\circ}] +$	+ a165*Si	$in[345^{\circ}] *Sir$] + n[345°]];	
w _i : 出	カノルム値, メ	x _i : x座標值,	y _i : y座標值	
i=1	a000	$\cos(0^{\circ})$	$Sin(0^{\circ})$	
i=2	a015	$\cos(15^{\circ})$	$Sin(15^{\circ})$	
i=3	a030	$\cos(30^{\circ})$	$Sin(30^{\circ})$	
	:			
i=24	a165	$\cos(345^{\circ})$	$Sin(345^{\circ})$	

テクスチャ画像のフーリエ変換と表示

